Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 15(7): 1546-1556, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31337983

RESUMO

Intermediate filaments play significant roles in governing cell stiffness and invasive ability. Nestin is a type VI intermediate filament protein that is highly expressed in several high-metastatic cancer cells. Although inhibition of nestin expression was shown to reduce the metastatic capacity of tumor cells, the relationship between this protein and the mechanism of cancer cell metastasis remains unclear. Here, we show that nestin softens the cell body of the highly metastatic mouse breast cancer cell line FP10SC2, thereby enhancing the metastasis capacity. Proximity ligation assay demonstrated increased binding between actin and vimentin in nestin knockout cells. Because nestin copolymerizes with vimentin and nestin has an extremely long tail domain in its C-terminal region, we hypothesized that the tail domain functions as a steric inhibitor of the vimentin-actin interaction and suppresses association of vimentin filaments with the cortical actin cytoskeleton, leading to reduced cell stiffness. To demonstrate this function, we mechanically pulled vimentin filaments in living cells using a nanoneedle modified with vimentin-specific antibodies under manipulation by atomic force microscopy (AFM). The tensile test revealed that mobility of vimentin filaments was increased by nestin expression in FP10SC2 cells.


Assuntos
Actinas/química , Metástase Neoplásica/patologia , Nestina/fisiologia , Vimentina/química , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quimiotaxia , Citoesqueleto/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Invasividade Neoplásica , Nestina/química , Domínios Proteicos , Análise de Sequência de RNA , Estresse Mecânico
2.
Biochem Biophys Res Commun ; 451(1): 107-11, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25065738

RESUMO

The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered-integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin-substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.


Assuntos
Biofísica/métodos , Microscopia de Força Atômica/métodos , Nanotecnologia/instrumentação , Animais , Biofísica/instrumentação , Adesão Celular , Linhagem Celular , Membrana Celular , Camundongos , Microscopia de Força Atômica/instrumentação , Ratos
3.
Langmuir ; 29(21): 6429-33, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23639009

RESUMO

We report here a method for controlling cell adhesion, allowing simple yet accurate cell detachment from the substrate, which is required for the establishment of new cytometry-based cell processing and analyzing methods. A biocompatible anchor for membrane (BAM) was conjugated with bovine serum albumin (BSA) to produce a cell-anchoring agent (BAM-BSA). By coating polystyrene substrates with a mixture of BAM-BSA and BSA, controlled suppression of the substrate's adhesive properties was achieved. Hook-shaped nanoneedles were used to pick up cells from the substrate, while recording the cell-substrate adhesion force, using an atomic force microscope (AFM). Due to the lipid bilayer targeting property of BAM, the coated surface showed constant adhesion forces for various cell lines, and controlling the BAM-BSA/BSA ratio enabled tuning of the adhesion force, ranging from several tens of nano-Newtons down to several nano-Newtons. Optimized tuning of the adhesion force also enabled the detachment of cells from BAM-BSA/BSA-coated dishes, using a shear flow. Moreover, the method was shown to be noncell type specific and similar results were observed using four different cell types, including nonadherent cells. The attenuation of cell adhesion was also used to enable the collection of single cells by capillary aspiration. Thus, this versatile and relatively simple method can be used to control the adhesion of various cell types to substrates.


Assuntos
Materiais Biocompatíveis/química , Soroalbumina Bovina/química , Animais , Bovinos , Adesão Celular , Membrana Celular , Células Cultivadas , Camundongos , Estrutura Molecular , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...