Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009995

RESUMO

Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials.

2.
J Am Soc Mass Spectrom ; 28(11): 2352-2360, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801779

RESUMO

NiO layers were deposited by metal-organic chemical vapor deposition using bis-(ethylcyclopentadienyl) nickel (EtCp)2Ni and oxygen or ozone. As a continuation of kinetic study of NiO MOCVD the gas-phase, transformations of (EtCp)2Ni were studied in the temperature range of 380-830 K. Time of reactions corresponding to the residence time of the gas stream in hot zone of the reactor was about 0.1 s under conditions studied. The interaction of (EtCp)2Ni with oxygen started at 450 K and its conversion rate reached the maximum at 700 K. The interaction of (EtCp)2Ni with ozone started at 400 K and its conversion rate reached the maximum at 600 K. Transformations of the gas phase with the temperature in the reaction zone were studied, the model reaction schemes illustrating (EtCp)2Ni transformations in the reaction systems containing oxygen and ozone have developed. In the reaction system (EtCp)2Ni-O2-Ar the main gas-phase products at 380-500 K were CO, CO2, HCO, C2H5OH, CpCOOH, and CpO. Formation of the C2H2O, C3H4O, and C5H8O was found at 630-830 K. The same gas-phase species, (C4H3O)2Ni and dialdehydes was formed in the reaction system (EtCp)2Ni-O3-O2-Ar. Graphical Abstract ᅟ.

3.
J Nanosci Nanotechnol ; 15(12): 9966-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682441

RESUMO

This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...