Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clim Change ; 176(9): 124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641730

RESUMO

Landslides are an important natural hazard in mountainous regions. Given the triggering and preconditioning by meteorological conditions, it is known that landslide risk may change in a warming climate, but whether climate change has already affected individual landslide events is still an open question, partly owing to landslide data limitations and methodological challenges in climate impact attribution. Here, we demonstrate the substantial influence of anthropogenic climate change on a severe event in the southeastern Alpine forelands with some estimated 952 individual landslides in June 2009. Our study is based on conditional event attribution complemented by an assessment of changes in atmospheric circulation. Using this approach, we simulate the meteorological event under observed and a range of counterfactual conditions of no climate change and explicitly predict the landslide occurrence probability for these conditions. We find that up to 10%, i.e., 95 landslides, can be attributed to climate change.

2.
Int J Climatol ; 43(14): 6763-6782, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38505215

RESUMO

A novel convection permitting modelling framework that combines a pseudo-global warming approach with continuously forced deep soil moisture from prescribed perturbation storylines is applied in the Eastern European Alpine region and parts of the Pannonian Basin to investigate soil moisture precipitation (SMP) feedbacks on summertime precipitation and the feedbacks' role under changed climate conditions. A set of 1-year convection-permitting (3 km horizontal grid spacing) soil moisture sensitivity simulations with the regional climate model of the Consortium for Small-Scale Modelling in Climate Mode are conducted. In order to account for global warming, end-of-the-century climate change effects from four global climate models, projecting the greenhouse gas concentration scenario RCP 8.5, are imprinted. The simulations reveal that (1) the locations of precipitation events are highly sensitive to soil moisture modifications while intensities and the internal structure of precipitation events are nearly unaffected and (2) high precipitation intensities are more likely in combinations with positive temporal but distinctive (either strong positive or strong negative) spatial SMP coupling. Low precipitation intensities are in favour of combinations of negative temporal and positive spatial coupling. The analyses suggest that soil moisture at a given time acts as a guiding field for the location of the next precipitation event. Interestingly, this behaviour is independent of climate change, although the coupling strength's increase is 1.5-1.7 times larger than expected from linear climate change scaling when climate becomes 50% dryer. Finally, it is found that (1) local deviations in the climate change signal of summertime precipitation in the range of up to ±40% are caused by uncertainty in deep soil moisture in the range of ±10% and (2) these local deviations in the climate change signal are dominated by soil moisture uncertainty in future climate conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...