Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(4): 109, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914777

RESUMO

We report a high rate of seropositivity against SARS-CoV-2 in wild felines in India. Seropositivity was determined by microneutralization and plaque reduction neutralization assays in captive Asiatic lions, leopards, and Bengal tigers. The rate of seropositivity was positively correlated with that of the incidence in humans, suggesting the occurrence of large spillover events.


Assuntos
COVID-19 , Leões , Panthera , Tigres , Animais , Gatos , Humanos , SARS-CoV-2 , Estudos Retrospectivos , COVID-19/epidemiologia , Índia/epidemiologia
2.
J Virol Methods ; 312: 114665, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509247

RESUMO

Lumpy skin disease (LSD) is a highly infectious and economically important viral disease, which is currently emerging in the Indian subcontinent. LSD is caused by Lumpy Skin Disease Virus (LSDV) under the genus Capripoxvirus and the family Poxviridae. Since its first incursion in India in the year 2019, the virus is rapidly disseminating through different means like direct contact, fomites and mainly by blood-feeding insects. As the disease has never been reported from India or neighbouring countries, there is a lack of planning and preparatory measures in terms of diagnostics and vaccines to control the disease. In the absence of any homologous vaccine, a live attenuated heterologous goat pox vaccine (Uttarkashi strain) is now being widely used in the country for the prevention of LSDV infection. Use of live attenuated goat pox virus vaccine necessitates the availability of an assay which could specifically detect and differentiate LSDV from goat pox virus. In this study, nucleotide sequences of LSDV126 gene encoding extracellular enveloped virus protein of circulating LSDV and goat pox virus were determined and analyzed. Deletion of 27 nt tandem repeats was observed in LSDV in comparison to goat pox and LSDV vaccine viruses. The deletion region was targeted for designing primers specific to LSDV, but not goat pox virus. A novel isothermal polymerase spiral reaction (PSR) was optimized as pen side diagnostic for prompt and sensitive detection of genomic DNA of LSDV. The assay was found to be highly sensitive and specific when compared to the real-time PCR. The assay was found to be specifically detecting only LSDV but not the goat pox virus. The limit of detection was identified as 9 × 10-6 ng of positive DNA. The assay will provide a point of care tool that will be a boon for the successful control of LSD in India.


Assuntos
Capripoxvirus , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Infecções por Poxviridae , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Capripoxvirus/genética , Infecções por Poxviridae/prevenção & controle , Vacinas Atenuadas/genética , DNA , Doença Nodular Cutânea/diagnóstico , Doença Nodular Cutânea/prevenção & controle
3.
ACS Nano ; 16(4): 5975-5983, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35333048

RESUMO

We demonstrate here the growth of aluminum (Al), copper (Cu), gold (Au), and silver (Ag) epitaxial films on two-dimensional, layered muscovite mica (Mica) substrates via van der Waals (vdW) heteroepitaxy with controllable film thicknesses from a few to hundreds of nanometers. In this approach, the mica thin sheet acts as a flexible and transparent substrate for vdW heteroepitaxy, which allows for large-area formation of atomically smooth, single-crystalline, and ultrathin plasmonic metals without the issue of film dewetting. The high-quality plasmonic metal films grown on mica enable us to design and fabricate well-controlled Al and Cu plasmonic nanostructures with tunable surface plasmon resonances ranging from visible to the near-infrared spectral region. Using these films, two kinds of plasmonic device applications are reported, including (1) plasmonic sensors with high effective index sensitivities based on surface plasmon interferometers fabricated on the Al/Mica film and (2) Cu/Mica nanoslit arrays for plasmonic color filters in the visible and near-infrared regions. Furthermore, we show that the responses of plasmonic nanostructures fabricated on the Mica substrates remain unaltered under large substrate bending conditions. Therefore, the metal-on-mica vdW heteroepitaxy platform is suitable for flexible plasmonics based on their bendable properties.

4.
J Am Chem Soc ; 143(46): 19282-19286, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34748330

RESUMO

In life science, rapid mutation detection in oligonucleotides is in a great demand for genomic and medical screening. To satisfy this demand, surface-enhanced resonance Raman spectroscopy (SERRS) in the deep-UV (DUV) regime offers a promising solution due to its merits of label-free nature, strong electromagnetic confinement, and charge transfer effect. Here, we demonstrate an epitaxial aluminum (Al) DUV-SERRS substrate that resonates effectively with the incident Raman laser and the ss-DNA at 266 nm, yielding significant SERRS signals of the detected analytes. For the first time, to the best of our knowledge, we obtaine SERRS spectra for all bases of oligonucleotides, not only revealing maximum characteristic Raman peaks but also recording the highest enhancement factor of up to 106 for a 1 nm thick adenine monomer. Moreover, our epitaxial Al DUV-SERRS substrate is able to enhance the Raman signal of all four bases of 12-mer ss-DNA and to further linearly quantify the single-base mutation in the 12-mer ss-DNA.


Assuntos
Oligonucleotídeos/genética , Mutação , Análise Espectral Raman
5.
Nano Lett ; 21(12): 4928-4936, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34109795

RESUMO

Room-temperature photoluminescence enhancement of molybdenum disulfide (MoS2) monolayers on epitaxial titanium nitride (TiN) thin films grown by molecular-beam-epitaxy as well as magnetron-sputtered TiN films is observed by a confocal laser scanning microscope with excitation wavelengths covering the transition of TiN's macroscopic optical properties from dielectric to plasmonic. The photoluminescence enhancement increases as TiN becomes more metallic, and strong enhancement is obtained at the excitation wavelengths equal to or longer than the epsilon-near-zero (ENZ) wavelength of TiN films. A good agreement is observed between measured and calculated enhancements. The enhancement is attributed to the increased excitation field in MoS2 at TiN's ENZ wavelength and interference effects for thick spacers that separate the MoS2 flakes from TiN films in the metallic regime. This study enriches the fundamental understanding of emission properties on ENZ substrates that could be important for the development of advanced nanoscale lasers/light sources, optical/biosensors, and nano-optoelectronic devices.

6.
Adv Sci (Weinh) ; 7(24): 2002274, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344129

RESUMO

Plasmonics have been well investigated on photodetectors, particularly in IR and visible regimes. However, for a wide range of ultraviolet (UV) applications, plasmonics remain unavailable mainly because of the constrained optical properties of applicable plasmonic materials in the UV regime. Therefore, an epitaxial single-crystalline aluminum (Al) film, an abundant metal with high plasma frequency and low intrinsic loss is fabricated, on a wide bandgap semiconductive gallium nitride (GaN) to form a UV photodetector. By deliberately designing a periodic nanohole array in this Al film, localized surface plasmon resonance and extraordinary transmission are enabled; hence, the maximum responsivity (670 A W-1) and highest detectivity (1.48 × 1015 cm Hz1/2 W-1) is obtained at the resonance wavelength of 355 nm. In addition, owing to coupling among nanoholes, the bandwidth expands substantially, encompassing the entire UV range. Finally, a Schottky contact is formed between the single-crystalline Al nanohole array and the GaN substrate, resulting in a fast temporal response with a rise time of 51 ms and a fall time of 197 ms. To the best knowledge, the presented detectivity is the highest compared with those of other reported GaN photodetectors.

7.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867049

RESUMO

ZnO nanowire-based surface plasmon polariton (SPP) nanolasers with metal-insulator-semiconductor hierarchical nanostructures have emerged as potential candidates for integrated photonic applications. In the present study, we demonstrated an SPP nanolaser consisting of ZnO nanowires coupled with a single-crystalline aluminum (Al) film and a WO3 dielectric interlayer. High-quality ZnO nanowires were prepared using a vapor phase transport and condensation deposition process via catalyzed growth. Subsequently, prepared ZnO nanowires were transferred onto a single-crystalline Al film grown by molecular beam epitaxy (MBE). Meanwhile, a WO3 dielectric interlayer was deposited between the ZnO nanowires and Al film, via e-beam technique, to prevent the optical loss from dominating the metallic region. The metal-oxide-semiconductor (MOS) structured SPP laser, with an optimal WO3 insulating layer thickness of 3.6 nm, demonstrated an ultra-low threshold laser operation (lasing threshold of 0.79 MW cm-2). This threshold value was nearly eight times lower than that previously reported in similar ZnO/Al2O3/Al plasmonic lasers, which were ≈2.4 and ≈3 times suppressed compared to the SPP laser, with WO3 insulating layer thicknesses of 5 nm and 8 nm, respectively. Such suppression of the lasing threshold is attributed to the WO3 insulating layer, which mediated the strong confinement of the optical field in the subwavelength regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...