Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUBMB Life ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031996

RESUMO

Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.

2.
FASEB J ; 37(8): e23062, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389962

RESUMO

The factors that drive dengue virus (DENV) evolution, and selection of virulent variants are yet not clear. Higher environmental temperature shortens DENV extrinsic incubation period in mosquitoes, increases human transmission, and plays a critical role in outbreak dynamics. In the present study, we looked at the effect of temperature in altering the virus virulence. We found that DENV cultured at a higher temperature in C6/36 mosquito cells was significantly more virulent than the virus grown at a lower temperature. In a mouse model, the virulent strain induced enhanced viremia and aggressive disease with a short course, hemorrhage, severe vascular permeability, and death. Higher inflammatory cytokine response, thrombocytopenia, and severe histopathological changes in vital organs such as heart, liver, and kidney were hallmarks of the disease. Importantly, it required only a few passages for the virus to acquire a quasi-species population harboring virulence-imparting mutations. Whole genome comparison with a lower temperature passaged strain identified key genomic changes in the structural protein-coding regions as well as in the 3'UTR of the viral genome. Our results point out that virulence-enhancing genetic changes could occur in the dengue virus genome under enhanced growth temperature conditions in mosquito cells.


Assuntos
Vírus da Dengue , Humanos , Animais , Camundongos , Vírus da Dengue/genética , Sorogrupo , Temperatura , Virulência , Regiões 3' não Traduzidas , Modelos Animais de Doenças
3.
Microbiol Res ; 215: 65-75, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30172310

RESUMO

Increased intestinal absorption of oxalate causes hyperoxaluria, a major risk factor for kidney stone disease. Intestinal colonization of recombinant probiotic bacteria expressing oxalate-degrading gene (OxdC) is an effective therapeutic option for recurrent calcium oxalate (CaOx) stone disease. Therefore, we aimed to develop food-grade probiotic L. plantarum secreting OxdC using lactococcal group II intron, Ll.LtrB and evaluate its oxalate degradation ability in vivo. Male Wistar albino rats were divided into four groups. The rats of group I received normal rat chow and drinking water. Groups II, III and IV rats received 5% potassium oxalate containing diet for 28 days. Groups III and IV rats received L. plantarum and food-grade recombinant L. plantarum respectively from 15 to 28 days. Biochemical parameters and crystalluria were analysed in 24 h urine samples. At the end of experimental period, rats were sacrificed; intestine and kidneys were dissected out for colonization studies and histopathological analysis. Herein, we found that the administration of recombinant probiotics significantly reduced the urinary oxalate, calcium, urea, and creatinine levels in rats of group IV compared to group II. Furthermore, colonization studies indicated that recombinant probiotics have gastrointestinal transit and intestinal colonization ability similar to that of wild-type bacteria. In addition, gene expression studies revealed down-regulation of OPN and KIM-1 among group IV rats. Histopathological analysis showed less evidence of nephrocalcinosis in group IV rats. In conclusion, the study demonstrates that food-grade L. plantarum secreting OxdC is capable of degrading intestinal oxalate and thereby prevent CaOx stone formation in experimental rats.


Assuntos
Carboxiliases/genética , Carboxiliases/farmacologia , Hiperoxalúria/tratamento farmacológico , Intestinos/microbiologia , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Oxalatos/metabolismo , Probióticos/farmacologia , Alanina Racemase , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/urina , Oxalato de Cálcio/metabolismo , Carboxiliases/metabolismo , Moléculas de Adesão Celular/genética , Creatinina/urina , Modelos Animais de Doenças , Expressão Gênica , Genes Bacterianos/genética , Instabilidade Genômica , Hiperoxalúria/induzido quimicamente , Hiperoxalúria/prevenção & controle , Hiperoxalúria/urina , Mucosa Intestinal/metabolismo , Íntrons/genética , Rim/metabolismo , Rim/patologia , Cálculos Renais/induzido quimicamente , Cálculos Renais/tratamento farmacológico , Cálculos Renais/prevenção & controle , Cálculos Renais/urina , Masculino , Mutagênese , Nefrocalcinose/patologia , Oxalatos/química , Oxalatos/urina , Ácido Oxálico/metabolismo , Probióticos/administração & dosagem , Probióticos/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Ureia/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...