Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1220140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670770

RESUMO

Sleep is conserved across species, and it is believed that a fixed amount of sleep is needed for normal neurobiological functions. Sleep rebound follows sleep deprivation; however, continuous sleep deprivation for longer durations is believed to be detrimental to the animal's wellbeing. Under some physiologically demanding situations, such as migration in birds, the birth of new offspring in cetaceans, and sexual interactions in pectoral sandpipers, animals are known to forgo sleep. The mechanisms by which animals forgo sleep without having any obvious negative impact on the proper functioning of their neurobiological processes are yet unknown. Therefore, a simple assay is needed to study how animals forgo sleep. The assay should be ecologically relevant so it can offer insights into the physiology of the organisms. Equally important is that the organism should be genetically amenable, which helps in understanding the cellular and molecular processes that govern such behaviors. This paper presents a simple method of sociosexual interaction to understand the process by which animals forgo sleep. In the case of Drosophila melanogaster, when males and females are in proximity, they are highly active and lose a significant amount of sleep. In addition, there is no sleep rebound afterward, and instead, males engaged in sexual interactions continue to show normal sleep. Thus, sexual drive in the fruit flies is a robust assay to understand the underlying mechanism by which animals forgo sleep.

2.
Environ Sci Pollut Res Int ; 30(10): 25402-25416, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34813017

RESUMO

A novel BiOY (Y = Br/Cl) heterojunction nanocatalyst was synthesised chemically and compared with three different BiOX (X = Br/Cl/I) nanocatalysts as well as a physical admixture of BiOBr/BiOCl catalysts in the photocatalytic degradation of malachite green dye wastewater under solar irradiation in both suspended and immobilised forms using polysulfone as the substrate. Catalyst characterisation was done by a particle size analyser, SEM/EDX, XRD, FTIR, and DRS. In the suspended form, BiOBr showed 100% degradation within 70 min, BiOCl showed 99.3%, and BiOI showed 11.2% degradation within 120 min, and it is found to follow pseudo-first-order kinetics. In the immobilised form, BiOBr showed 89.1%, and BiOCl showed 83.4% degradation within 180 min under sunlight. The degradation measured by TOC reduction for these catalysts in suspended form was 67.4%, 57%, and 40%, affirming BiOBr as the best among these catalysts. The performance of the immobilised chemically synthesised BiOY and physical admixture catalysts were 88% and 14%, respectively. The enhanced activity in the chemically synthesised immobilised BiOBr/Cl catalyst can be attributed to the effective charge separation at the heterojunction interface. These photocatalysts are very active under solar light and hence suitable for the efficient degradation of other recalcitrant organic contaminants.


Assuntos
Luz Solar , Purificação da Água , Bismuto , Catálise
3.
J Comp Physiol B ; 193(1): 57-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271924

RESUMO

Sleep is conserved in the animal kingdom and plays a pivotal role in the adaptation of species. Sleep in Drosophila melanogaster is defined as any continuous 5 min of quiescence, shows a prominent siesta, and consolidated nighttime sleep. Here, we analyzed the sleep of two other species D. malerkotliana (DMK) and D. ananassae (DA), and compared it with D. melanogaster (DM). The DMK males and females have siesta like DM. However, unlike DM, flies continue to sleep beyond siesta till the evening. DA has a less prominent siesta compared to DM and DMK. In the morning, DA took a longer time to respond to the lights ON and continued to sleep for at least half an hour. The nighttime sleep of the DA flies is higher than the other two species. Average length of sleep episode is three times more than that of DM and DMK with few wake episodes. Thus, the nighttime sleep of DA males and females is deep and needs exposure to more potent stimuli to wake up relative to the other two species. DA males and females show higher sleep rebound than the other two species, suggesting the robustness of sleep homeostasis. Although total sleep of DMK and DA is similar, DA is a day-active species with highly consolidated night sleep. DMK, like DM, is a crepuscular species with a midday siesta. Thus, our results suggest that temporal partitioning of sleep, in sympatric species may contribute to temporal segregation.


Assuntos
Ritmo Circadiano , Drosophila melanogaster , Masculino , Feminino , Animais , Drosophila melanogaster/fisiologia , Ritmo Circadiano/fisiologia , Simpatria , Sono/fisiologia , Aclimatação
4.
ACS Omega ; 7(16): 14377-14389, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35573212

RESUMO

A rapid synthesis of aminoboranes from amine-boranes utilizing an iodination/dehydroiodination sequence is described. Monomeric aminoboranes are generated exclusively from several substrate adducts, following an E2-type elimination, with the added base playing a critical role in monomer vs dimer formation. Diisopropylaminoborane formed using this methodology has been applied to a one-pot palladium-catalyzed conversion of iodo- and bromoarenes to the corresponding boronates. Additionally, modification of the workup allows for isolation of the boronic acid and recovery of the utilized amine.

5.
J Neurosci ; 41(45): 9403-9418, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34635540

RESUMO

The neuronal and genetic bases of sleep, a phenomenon considered crucial for well-being of organisms, has been under investigation using the model organism Drosophila melanogaster Although sleep is a state where sensory threshold for arousal is greater, it is known that certain kinds of repetitive sensory stimuli, such as rocking, can indeed promote sleep in humans. Here we report that orbital motion-aided mechanosensory stimulation promotes sleep of male and female Drosophila, independent of the circadian clock, but controlled by the homeostatic system. Mechanosensory receptor nanchung (Nan)-expressing neurons in the chordotonal organs mediate this sleep induction: flies in which these neurons are either silenced or ablated display significantly reduced sleep induction on mechanosensory stimulation. Transient activation of the Nan-expressing neurons also enhances sleep levels, confirming the role of these neurons in sleep induction. We also reveal that certain regions of the antennal mechanosensory and motor center in the brain are involved in conveying information from the mechanosensory structures to the sleep centers. Thus, we show, for the first time, that a circadian clock-independent pathway originating from peripherally distributed mechanosensors can promote daytime sleep of flies Drosophila melanogasterSIGNIFICANCE STATEMENT Our tendency to fall asleep in moving vehicles or the practice of rocking infants to sleep suggests that slow rhythmic movement can induce sleep, although we do not understand the mechanistic basis of this phenomenon. We find that gentle orbital motion can induce behavioral quiescence even in flies, a highly genetically tractable system for sleep studies. We demonstrate that this is indeed true sleep based on its rapid reversibility by sensory stimulation, enhanced arousal threshold, and homeostatic control. Furthermore, we demonstrate that mechanosensory neurons expressing a TRPV channel nanchung, located in the antennae and chordotonal organs, mediate orbital motion-induced sleep by communicating with antennal mechanosensory motor centers, which in turn may project to sleep centers in the brain.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/metabolismo , Mecanorreceptores/fisiologia , Sono/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Drosophila melanogaster , Feminino , Masculino
6.
Appl Biochem Biotechnol ; 169(8): 2392-404, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23456278

RESUMO

Pigeon pea (Cajanus cajan) is a perennial plant widely cultivated in tropical and subtropical regions of many countries. The present studies aimed to produce xylooligosaccharides (XOS) from pigeon pea stalks in order to do value addition. The chemical analysis of stalks revealed 18.33 ± 1.40 % hemicelluloses in addition to cellulose, protein, and lignin. Sodium hydroxide coupled with steam application enabled almost 96 % recovery of original xylan, present in the pigeon pea stalks. Enzymatic hydrolysis of xylan led to production of XOS namely, xylobiose and xylotriose. Response surface model indicated a maximum yield of xylobiose (0.502 mg/ml) under the hydrolysis conditions of pH 4.91, temperature at 48.11 °C, enzyme dose at 11.01 U, and incubation time at 15.65 h. The ideal conditions for higher xylotriose yield (0.204 mg/ml) were pH 5.44, temperature at 39.29 °C, enzyme dose at 3.23 U, and incubation time at 15.26 h. The present investigation was successful in assessing the prospect of using pigeon pea stalks as a raw material for xylan extraction vis-à-vis XOS production.


Assuntos
Cajanus/metabolismo , Glucuronatos/metabolismo , Oligossacarídeos/metabolismo , Celulose/metabolismo , Dissacarídeos/metabolismo , Lignina/metabolismo , Polissacarídeos/metabolismo , Trissacarídeos/metabolismo , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...