Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237471

RESUMO

Reportedly, strenuous endurance exercise can depress the immune system and induce inflammation and muscle damage. Therefore, this double-blinded, matched-pair study aimed to investigate the impact of vitamin D3 supplementation on immune response (leukocyte, neutrophil, lymphocyte, CD4+, CD8+, CD19+, and CD56+ counts), inflammatory profile (TNF-α and IL-6), muscle damage (CK and LDH levels), as well as aerobic capacity after strenuous endurance exercise in 18 healthy men taking 5000 IU of vitamin D3 (n = 9) or placebo (n = 9) daily for 4 weeks. Total and differential blood leukocyte counts, levels of cytokines, and muscle damage biomarkers were determined before, immediately after, and 2, 4, and 24 h after exercise. The IL-6, CK, and LDH levels were significantly lower in vitamin D3 group at 2, 4, and 24 h post exercise (p < 0.05). Maximal and average heart rates during exercise were also significantly lower (p < 0.05). In the vitamin D3 group, the CD4+/CD8+ ratio after 4 weeks of supplementation was only significantly lower at post-0 than at baseline and significantly higher at post-2 than at baseline and post-0 (all p < 0.05). Taken together, 5000 IU of daily vitamin D3 supplementation for 4 weeks exhibited positive effects in terms of increased blood 25(OH)D levels, CD4+/CD8+ ratio (immune response), and aerobic capacity while inhibiting inflammatory cytokines and CK and LDH (muscle damage) in people performing strenuous endurance exercise.

2.
Aging Dis ; 14(4): 1038-1069, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163444

RESUMO

Increasing incidences of insomnia in adults, as well as the aging population, have been reported for their negative impact on the quality of life. Insomnia episodes may be associated with neurocognitive, musculoskeletal, cardiovascular, gastrointestinal, renal, hepatic, and metabolic disorders. Epidemiological evidence also revealed the association of insomnia with oncologic and asthmatic complications, which has been indicated as bidirectional. Two therapeutic approaches including cognitive behavioral therapy (CBT) and drugs-based therapies are being practiced for a long time. However, the adverse events associated with drugs limit their wide and long-term application. Further, Traditional Chinese medicine, acupressure, and pulsed magnetic field therapy may also provide therapeutic relief. Notably, the recently introduced cryotherapy has been demonstrated as a potential candidate for insomnia which could reduce pain, by suppressing oxidative stress and inflammation. It seems that the synergistic therapeutic approach of cryotherapy and the above-mentioned approaches might offer promising prospects to further improve efficacy and safety. Considering these facts, this perspective presents a comprehensive summary of recent advances in pathological aetiologies of insomnia including COVID-19, and its therapeutic management with a greater emphasis on cryotherapy.

3.
Int J Mol Sci ; 19(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060511

RESUMO

Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Separação Celular/métodos , Células Estromais/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Técnicas de Cultura de Células , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osteogênese/efeitos dos fármacos , Medicina Regenerativa , Células Estromais/metabolismo
4.
J Diabetes Res ; 2018: 7806435, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046616

RESUMO

High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Linhagem da Célula , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/terapia , Retinopatia Diabética/fisiopatologia , Retinopatia Diabética/terapia , Humanos , Hiperglicemia/complicações , Insulina/metabolismo , Resistência à Insulina , Camundongos , Microcirculação , Estresse Nitrosativo , Estresse Oxidativo , Transdução de Sinais , Cicatrização
5.
Stem Cells Int ; 2018: 5421019, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765416

RESUMO

Knee osteoarthritis (OA) is a chronic degenerative disorder which could be distinguished by erosion of articular cartilage, pain, stiffness, and crepitus. Not only aging-associated alterations but also the metabolic factors such as hyperglycemia, dyslipidemia, and obesity affect articular tissues and may initiate or exacerbate the OA. The poor self-healing ability of articular cartilage due to limited regeneration in chondrocytes further adversely affects the osteoarthritic microenvironment. Traditional and current surgical treatment procedures for OA are limited and incapable to reverse the damage of articular cartilage. To overcome these limitations, cell-based therapies are currently being employed to repair and regenerate the structure and function of articular tissues. These therapies not only depend upon source and type of stem cells but also on environmental conditions, growth factors, and chemical and mechanical stimuli. Recently, the pluripotent and various multipotent mesenchymal stem cells have been employed for OA therapy, due to their differentiation potential towards chondrogenic lineage. Additionally, the stem cells have also been supplemented with growth factors to achieve higher healing response in osteoarthritic cartilage. In this review, we summarized the current status of stem cell therapies in OA pathophysiology and also highlighted the potential areas of further research needed in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...