Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 22(8): 2834-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26946185

RESUMO

The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Eucalyptus/metabolismo , Ciclo do Carbono , Mudança Climática , Florestas , Fotossíntese , Água
2.
New Phytol ; 200(3): 595-597, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24117805
3.
Environ Sci Technol ; 42(4): 1066-71, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18351073

RESUMO

Colloid transport was studied in heterogeneous sand columns under unsaturated steady-state conditions, using two sizes of acid-cleaned sand to pack the column. Heterogeneity was created by placing three continuous tubes of fine sand (3.6% of the total volume) within a column of coarse sand (mean grain diameters 0.36 and 1.2 mm, respectively). Experiments were performed under three flow rates (0.1, 0.2, and 0.4 cm/ min) applied by a rain simulator atthe top of the column. Constant water-content profile in the coarse sand was achieved by applying corresponding suction at the column bottom. Three sizes of latex microspheres (1, 0.2, and 0.02 microm) and soluble tracers (LiBr), diluted in a weak base (pH 7.3, ionic strength 0.0023 M) solution, were used simultaneously. Introduction of preferential pathways reduced front-arrival time about 2-fold and increased colloid recovery which, at the 0.2 cm/min flow rate, was higher than at 0.4 and 0.1 cm/min. Maximum solution flux from coarse to fine sand (due to differences in matric pressure) at 0.2 cm/min, verified by hydrodynamic modeling, could explain this phenomenon. Results suggest that in heterogeneous soil, maximum colloid recovery does not necessarily occur at maximum water content. This has clear implications for colloid transport in natural soils, many of which are heterogeneous.


Assuntos
Coloides/química , Dióxido de Silício , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...