Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38661297

RESUMO

Drop impact phenomena on raw, polished, and topography-altered gradient surfaces are investigated and presented. The main aim of this study is to demonstrate that in using a one-step industrial patterning process, it is possible to obtain metal topographical wetting gradients that can produce various desired outcomes after droplet impact. The findings could be applied to improving wind or steam turbine blades. The ranges of Weber (We) and Reynolds (Re) numbers in the study are 3-300 and 650-6500, respectively. It is demonstrated that for a fixed We, the droplet transport outcomes change from bouncing-off to side-flipping to deposition depending on the impact location and the gradient strength. The effect of We in combination with the gradient strength was also considered to demonstrate droplet behavior similar to that observed on a uniform water repellent surface and on biphilic systems. In addition, full bouncing-off and directional control have been demonstrated. For the condition We = 95 ± 3, it was possible to achieve a maximum droplet recoil height of ∼6 mm and a side motion of almost 8 mm. A combination of different outcomes (e.g., splashing on one side of a droplet and passive horizontal translation on another) was observed on the studied gradients at We > 200 due to different wetting regimes across the droplet's three-phase line.

2.
Langmuir ; 38(6): 1954-1965, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35113579

RESUMO

Nature shows various approaches to create superhydrophobicity, such as the lotus leaf, where the superhydrophobic (SHPB) surface arising from its hierarchical surface consists of random microscale bumps with superimposed nanoscale hairs. Some natural systems, such as the hydrophilic silk of some spider's webs, even allow the passive transport of water droplets from one part of a surface to another by creating gradients in surface tension and Laplace pressure. We look to combine both ideas and replicate the superb water repellence of the lotus leaf and the surface tension gradient-driven motion of the spider silk to form an all-metal, coating-less surface that promotes spontaneous droplet motion. We present the design, fabrication, and investigation of such superhydrophobic gradient surfaces on aluminum, which are aimed at spontaneous water droplet movement for improved surface water management. One surface demonstrates a droplet travel distance of almost 2 mm for a 11 µL droplet volume. We also present surfaces that map the theoretical ranges of the surface tension gradient surfaces tested here.


Assuntos
Alumínio , Água , Interações Hidrofóbicas e Hidrofílicas , Lasers , Propriedades de Superfície , Água/química , Molhabilidade
3.
Langmuir ; 38(4): 1386-1397, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050636

RESUMO

Superhydrophobic surfaces demonstrate extreme water-repellence, promoting drop-wise over film-wise condensation, increasing liquid mobility, and reducing thermal resistance for heat-exchanger applications. Introducing topographic structures can lead to modified surface free energy, as inspired by natural systems like the lotus leaf, potentially allowing coating-free ice- and frost-free surfaces under certain conditions. This work presents a study of coating-free aluminum micro/nanopatterns fabricated using micromilling or laser-etching techniques and the resultant wetting properties. Our review and experiments clarify the roles of line-edge-roughness and microstructural geometry from each microfabrication technique, which manifests in technique-specific nano- to midmicro-scale roughness, producing a hierarchical structure in both cases. For micromilling, line-edge-roughness consists of jagged burrs of 1-8 µm thickness with 10-25 µm periodicity along the microlines with constantly changing height on the order of 1-20 µm. These effects simultaneously raise the water contact angle from 52° (unprocessed aluminum) up to 136° but with strong edge pinning effects. On the other hand, laser-etched surfaces exhibit line-edge-roughness with a microstructure of 3-20 µm width and 5-10 µm in height superimposed with evenly spread spikes of 50-250 nm. This results in a high contact angle (>150°) coupled with a low contact angle hysteresis (<15°), promoting superhydrophobicity on a coating-free aluminum surface. It is also shown that for certain cases, line-edge-roughness is more important for the resultant wetting properties than the structure geometry.

4.
Langmuir ; 38(2): 605-619, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34498455

RESUMO

Surface wetting gradients are desirable due to their ability to passively transport liquid droplets without the aid of gravity. Such surfaces can be prepared through topographical or chemical methods or a compound approach involving both methods. By altering the surface free energy across a surface, a droplet that contacts such a surface will experience an actuation force toward the hydrophilic region. Such transport properties make these surfaces attractive for a range of applications from thermal management to microfluidics to the investigation of biomolecular interactions. This paper reviews passive wetting gradients that have been demonstrated over the last three decades, focusing on the types of surfaces that have been developed to date along with the materials that have been used. The corresponding wetting ranges and physical lengths over which droplet mobility has been achieved on these various types of gradient surfaces are compared to guide future developments.


Assuntos
Microfluídica , Interações Hidrofóbicas e Hidrofílicas , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...