Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(4-1): 044209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397497

RESUMO

We report on experiments that were performed with microwave waveguide systems and demonstrate that in the frequency range of a single transversal mode they may serve as a model for closed and open quantum graphs. These consist of bonds that are connected at vertices. On the bonds, they are governed by the one-dimensional Schrödinger equation with boundary conditions imposed at the vertices. The resulting transport properties through the vertices may be expressed in terms of a vertex scattering matrix. Quantum graphs with incommensurate bond lengths attracted interest within the field of quantum chaos because, depending on the characteristics of the vertex scattering matrix, its wave dynamic may exhibit features of a typical quantum system with chaotic counterpart. In distinction to microwave networks, which serve as an experimental model of quantum graphs with Neumann boundary conditions, the vertex scattering matrices associated with a waveguide system depend on the wave number and the wave functions can be determined experimentally. We analyze the spectral properties of microwave waveguide systems with preserved and partially violated time-reversal invariance, and the properties of the associated wave functions. Furthermore, we study properties of the scattering matrix describing the measurement process within the framework of random matrix theory for quantum chaotic scattering systems.

2.
Rev Sci Instrum ; 93(6): 063303, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778048

RESUMO

In the future, a new superconducting (SC) continuous wave (CW) high intensity heavy ion HElmholtz LInear ACcelerator (HELIAC) should provide ion beams with maximum beam energy above the Coulomb barrier for the Super Heavy Element program at GSI (Gesellschaft für Schwerionenforschung, in Engl.: Association for Heavy Ion Research). The HELIAC consists of a SC main accelerator supplied by a normal conducting injector, which comprises an electron cyclotron resonance ion source, a radio-frequency quadrupole, and two separate interdigital H-mode drift-tube linear accelerator cavities, based on an Alternating Phase Focusing (APF) scheme. Together, both cavities will accelerate ions from 300 to 1400 keV/u with only one external quadrupole triplet for transverse focusing in between. Due to the demanding requirements of the APF concept on the voltage distribution along the beam axis on the one hand and the CW operation on the other hand, the optimization of each cavity concerning RF, mechanical, and thermal properties is crucial for the successful operation of the HELIAC injector.

3.
Rev Sci Instrum ; 92(11): 113306, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852560

RESUMO

The upcoming commissioning of the superconducting (SC) continuous wave Helmholtz linear accelerators first of series cryomodule is going to demand precise alignment of the four internal SC cavities and two SC solenoids. For optimal results, a beam-based alignment method is used to reduce the misalignment of the whole cryomodule, as well as its individual components. A symmetric beam of low transverse emittance is required for this method, which is to be formed by a collimation system. It consists of two separate plates with milled slits, aligned in the horizontal and vertical direction. The collimation system and alignment measurements are proposed, investigated, and realized. The complete setup of this system and its integration into the existing environment at the GSI High Charge State Injector are presented, as well as the results of the recent reference measurements.

4.
Phys Rev Lett ; 123(17): 174101, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702235

RESUMO

We report on the experimental realization of a flat, superconducting microwave resonator, a microwave billiard, with partially violated time-reversal (T) invariance, induced by inserting a ferrite into the cavity and magnetizing it with an external magnetic field perpendicular to the resonator plane. In order to prevent its expulsion caused by the Meissner-Ochsenfeld effect, we used a cavity of which the top and bottom plate were made from niobium, a superconductor of type II, and cooled it down to liquid-helium temperature T_{LHe}≃4 K. The cavity had the shape of a chaotic Africa billiard. Superconductivity rendered possible the accurate determination of complete sequences of the resonance frequencies and of the widths and strengths of the resonances, an indispensable prerequisite for the unambiguous detection of T invariance violation, especially when it is only partially violated. This allows for the first time the precise specification of the size of T invariance violation from the fluctuation properties of the resonance frequencies and from the strength distribution, which actually depends sensitively on it and thus provides a most suitable measure. For this purpose we derived an analytical expression for the latter which is valid for isolated resonances in the range from no T invariance violation to complete violation.

5.
Phys Rev Lett ; 116(2): 023901, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26824540

RESUMO

We study distributions of the ratios of level spacings of rectangular and Africa-shaped superconducting microwave resonators containing circular scatterers on a triangular grid, so-called Dirac billiards (DBs). The high-precision measurements allowed the determination of, respectively, all 1651 and 1823 eigenfrequencies in the first two bands. The resonance densities are similar to that of graphene. They exhibit two sharp peaks at the van Hove singularities which separate the band structure into regions with a linear and a quadratic dispersion relation, respectively. In the vicinity of the van Hove singularities we observe rapid changes in, e.g., the wave function structure. Accordingly, we question whether the spectral properties are there still determined by the shapes of the DBs. The commonly used statistical measures are no longer applicable; however, we demonstrate in this Letter that the ratio distributions provide suitable measures.

6.
Phys Rev Lett ; 115(2): 026801, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207491

RESUMO

We report first experiments with a macroscopic-size superconducting microwave resonator that has the geometric structure of the C(60) fullerene molecule. Our high-resolution measurements reveal the exceptional spectral properties that stem from the icosahedral symmetry of its carbon lattice. In particular, they allow us to determine the number of zero-energy modes, i.e., of modes with energy values at the Dirac point existent in the band structure due to the hexagonal arrangements of the carbon atoms, and to test the Atiyah-Singer index theorem which relates this number to the topology of the curved carbon lattice.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052909, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493860

RESUMO

We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the field distributions were measured. The momentum space representations of the latter evidenced that the resonant states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore, they allow for a precise determination of the refractive index. Measurements with different arrangements of the emitting and the receiving antennas were performed and their influence on the symmetry properties of the field distributions was investigated in detail, showing that resonances with specific symmetries can be selected purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25215795

RESUMO

We determine with unprecedented accuracy the lowest 900 eigenvalues of two quantum constant-width billiards from resonance spectra measured with flat, superconducting microwave resonators. While the classical dynamics of the constant-width billiards is unidirectional, a change of the direction of motion is possible in the corresponding quantum system via dynamical tunneling. This becomes manifest in a splitting of the vast majority of resonances into doublets of nearly degenerate ones. The fluctuation properties of the two respective spectra are demonstrated to coincide with those of a random-matrix model for systems with violated time-reversal invariance and a mixed dynamics. Furthermore, we investigate tunneling in terms of the splittings of the doublet partners. On the basis of the random-matrix model we derive an analytical expression for the splitting distribution which is generally applicable to systems exhibiting dynamical tunneling between two regions with (predominantly) chaotic dynamics.


Assuntos
Modelos Teóricos , Análise Espectral , Análise de Fourier , Micro-Ondas , Movimento (Física) , Dinâmica não Linear , Teoria Quântica
9.
Artigo em Inglês | MEDLINE | ID: mdl-24730915

RESUMO

Scattering experiments with microwave cavities were performed and the effects of broken time-reversal invariance (TRI), induced by means of a magnetized ferrite placed inside the cavity, on an isolated doublet of nearly degenerate resonances were investigated. All elements of the effective Hamiltonian of this two-level system were extracted. As a function of two experimental parameters, the doublet and the associated eigenvectors could be tuned to coalesce at a so-called exceptional point (EP). The behavior of the eigenvalues and eigenvectors when encircling the EP in parameter space was studied, including the geometric amplitude that builds up in the case of broken TRI. A one-dimensional subspace of parameters was found where the differences of the eigenvalues are either real or purely imaginary. There, the Hamiltonians were found to be PT invariant under the combined operation of parity (P) and time reversal (T) in a generalized sense. The EP is the point of transition between both regions. There a spontaneous breaking of PT occurs.

10.
Phys Rev Lett ; 111(3): 030403, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909297

RESUMO

Scattering is an important phenomenon which is observed in systems ranging from the micro- to macroscale. In the context of nuclear reaction theory, the Heidelberg approach was proposed and later demonstrated to be applicable to many chaotic scattering systems. To model the universal properties, stochasticity is introduced to the scattering matrix on the level of the Hamiltonian by using random matrices. A long-standing problem was the computation of the distribution of the off-diagonal scattering-matrix elements. We report here an exact solution to this problem and present analytical results for systems with preserved and with violated time-reversal invariance. Our derivation is based on a new variant of the supersymmetry method. We also validate our results with scattering data obtained from experiments with microwave billiards.

11.
Artigo em Inglês | MEDLINE | ID: mdl-23679494

RESUMO

Quantum wires and electromagnetic waveguides possess common features since their physics is described by the same wave equation. We exploit this analogy to investigate experimentally with microwave waveguides and theoretically with the help of an effective potential approach the occurrence of bound states in sharply bent quantum wires. In particular, we compute the bound states, study the features of the transition from a bound to an unbound state caused by the variation of the bending angle, and determine the critical bending angles at which such a transition takes place. The predictions are confirmed by calculations based on a conventional numerical method as well as experimental measurements of the spectra and electric field intensity distributions of electromagnetic waveguides.

12.
Artigo em Inglês | MEDLINE | ID: mdl-24483530

RESUMO

We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are indispensable. The momentum representation of the measured field distributions shows that all resonant modes are localized on specific classical tori of the square billiard. Based on these observations a semiclassical model was developed. It shows excellent agreement with all but a single class of measured field distributions that will be treated separately.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056203, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004839

RESUMO

We measured the resonance spectra of two stadium-shaped dielectric microwave resonators and tested a semiclassical trace formula for chaotic dielectric resonators proposed by Bogomolny et al. [Phys. Rev. E 78, 056202 (2008)]. We found good qualitative agreement between the experimental data and the predictions of the trace formula. Deviations could be attributed to missing resonances in the measured spectra in accordance with previous experiments [Phys. Rev. E 81, 066215 (2010)]. The investigation of the numerical length spectrum showed good qualitative and reasonable quantitative agreement with the trace formula. It demonstrated, however, the need for higher-order corrections of the trace formula. The application of a curvature correction to the Fresnel reflection coefficients entering the trace formula yielded better agreement, but deviations remained, indicating the necessity of further investigations.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026203, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463296

RESUMO

The length spectra of flat three-dimensional dielectric resonators of circular shape were determined from a microwave experiment. They were compared to a semiclassical trace formula obtained within a two-dimensional model based on the effective index of refraction approximation and a good agreement was found. It was necessary to take into account the dispersion of the effective index of refraction for the two-dimensional approximation. Furthermore, small deviations between the experimental length spectrum and the trace formula prediction were attributed to the systematic error of the effective index of refraction approximation. In summary, the methods developed in this article enable the application of the trace formula for two-dimensional dielectric resonators also to realistic, flat three-dimensional dielectric microcavities and -lasers, allowing for the interpretation of their spectra in terms of classical periodic orbits.

15.
Phys Rev Lett ; 108(2): 024101, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22324686

RESUMO

We demonstrate the presence of parity-time (PT) symmetry for the non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP. An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016221, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867287

RESUMO

Single and double-slit experiments are performed with two microwave billiards with the shapes of a rectangle and a quarter stadium, respectively. The classical dynamics of the former is regular, whereas that of the latter is chaotic. Microwaves can leave the billiards via slits in the boundary, forming interference patterns on a screen. The aim is to determine the effect of the billiard dynamics on their structure. For this the development of a method for the construction of a directed wave packet by means of an array of multiple antennas was crucial. The interference patterns show a sensitive dependence not only on the billiard dynamics but also on the initial position and direction of the wave packet.

17.
Phys Rev Lett ; 106(15): 150403, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568534

RESUMO

We report on the experimental study of an exceptional point (EP) in a dissipative microwave billiard with induced time-reversal invariance (T) violation. The associated two-state Hamiltonian is non-Hermitian and nonsymmetric. It is determined experimentally on a narrow grid in a parameter plane around the EP. At the EP the size of T violation is given by the relative phase of the eigenvector components. The eigenvectors are adiabatically transported around the EP, whereupon they gather geometric phases and in addition geometric amplitudes different from unity.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 2): 066215, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20866509

RESUMO

Resonance spectra of two-dimensional dielectric microwave resonators of circular and square shapes have been measured. The deduced length spectra of periodic orbits were analyzed and a trace formula for dielectric resonators recently proposed by Bogomolny [Phys. Rev. E 78, 056202 (2008)] was tested. The observed deviations between the experimental length spectra and the predictions of the trace formula are attributed to a large number of missing resonances in the measured spectra. We show that by taking into account the systematics of observed and missing resonances the experimental length spectra are fully understood. In particular, a connection between the most long-lived resonances and certain periodic orbits is established experimentally.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036205, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365830

RESUMO

In a frequency range where a microwave resonator simulates a chaotic quantum billiard, we have measured moduli and phases of reflection and transmission amplitudes in the regimes of both isolated and of weakly overlapping resonances and for resonators with and without time-reversal invariance. Statistical measures for S -matrix fluctuations were determined from the data and compared with extant and/or newly derived theoretical results obtained from the random-matrix approach to quantum chaotic scattering. The latter contained a small number of fit parameters. The large data sets taken made it possible to test the theoretical expressions with unprecedented accuracy. The theory is confirmed by both a goodness-of-fit-test and the agreement of predicted values for those statistical measures that were not used for the fits, with the data.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036212, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19905205

RESUMO

Nonperiodic tunable quantum echoes have been observed in experiments with an open microwave billiard whose geometry under certain conditions provides Fibonacci-like sequences of classical delay times. These sequences combined with the reflection at the opening induced by the wave character of the experiment and the size of the opening allow to shape quantum pulses. The pulses are obtained by response of an integrable scattering system.


Assuntos
Modelos Teóricos , Oscilometria/métodos , Teoria Quântica , Simulação por Computador , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...