Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 41(8): 2054-9, 2002 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-11952358

RESUMO

We present studies of the resonance Raman and electronic luminescence spectra of the [Au(2)(dmpm)(3)](ClO(4))(2) (dmpm = bis(dimethylphosphine)methane) complex, including excitation into an intense band at 256 nm and into a weaker absorption system centered about approximately 300 nm. The resonance Raman spectra confirm the assignment of the 256 nm absorption band to a (1)(dsigma --> psigma) transition, a metal-metal-localized transition, in that nu(Au-Au) and overtones of it are strongly enhanced. A resonance Raman intensity analysis of the spectra associated with the 256 nm absorption band gives the ground-state and excited-state nu(Au-Au) stretching frequencies to be 79 and 165 cm(-1), respectively, and the excited-state Au-Au distance is calculated to decrease by about 0.1 A from the ground-state value of 3.05 A. The approximately 300 nm absorption displays a different enhancement pattern, in that resonance-enhanced Raman bands are observed at 103 and 183 cm(-1) in addition to nu(Au-Au) at 79 cm(-1) The compound exhibits intense, long-lived luminescence (in room-temperature CH(3)CN, for example, tau = 0.70 micros, phi(emission) = 0.037) with a maximum at 550-600 nm that is not very medium-sensitive. We conclude, in agreement with an earlier proposal of Mason (Inorg. Chem. 1989, 28, 4366-4369), that the lowest-energy, luminescent excited state is not (3)(dsigma --> psigma) but instead derives from (3)(d(x2-y2,xy --> psigma) excitations. We compare the Au(I)-Au(I) interaction shown in the various transitions of the [Au(2)(dmpm)(3)](ClO(4))(2) tribridged compound with previous results for solvent or counterion exciplexes of [Au(2)(dcpm)(2)](2+) salts (J. Am. Chem. Soc. 1999, 121, 4799-4803; Angew. Chem. 1999, 38, 2783-2785; Chem. Eur. J. 2001, 7, 4656-4664) and for planar, mononuclear Au(I) triphosphine complexes. It is proposed that the luminescent state in all of these cases is very similar in electronic nature.

2.
Inorg Chem ; 37(19): 5011-5013, 1998 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-11670670

RESUMO

The time-resolved resonance Raman spectrum of the short-lived triplet (dsigmapsigma) excited state of Rh(2)(TMB)(4)(2+) (TMB = 2,5-dimethyl-2,5-diisocyanohexane) was obtained by lowering the temperature of a 3:1 ethanol/methanol solution until the excited-state lifetime became much greater than the width of the pulsed laser excitation source. The metal-metal stretching frequency is 151 cm(-)(1) in the excited triplet state, as compared to 50 cm(-)(1) in the ground state. The diatomic harmonic force constants derived from these frequencies are in a 9.12:1 ratio (excited state/ground state), consistent with the simple molecular orbital description that predicts that the Rh-Rh bond order is greater in the excited state than in the ground state. A comparison of Rh(2)(TMB)(4)(2+) and Rh(2)b(4)(2+) (b = 1,3-diisocyanopropane) Raman data indicates that the nature of the bridging ligand considerably affects the ground- and excited-state metal-metal stretching frequencies and that the population of the psigma orbital may have very little effect on the bonding in the excited triplet state.

3.
Inorg Chem ; 37(26): 6858-6873, 1998 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11670823

RESUMO

The nature of the skeletal vibrational modes of complexes of the type M(2)(C&tbd1;CR)(4)(PMe(3))(4) (M = Mo, W; R = H, Me, Bu(t)(), SiMe(3)) has been deduced. Metrical data from X-ray crystallographic studies of Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) reveal that the core bond distances and angles are within normal ranges and do not differ in a statistically significant way as a function of the alkynyl substituent, indicating that their associated force constants should be similarly invariant among these compounds. The crystal structures of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and Mo(2)(C&tbd1;CBu(t)())(4)(PMe(3))(4) are complicated by 3-fold disorder of the Mo(2) unit within apparently ordered ligand arrays. Resonance-Raman spectra ((1)(delta-->delta) excitation, THF solution) of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and its isotopomers (PMe(3)-d(9), C&tbd1;CSiMe(3)-d(9), (13)C&tbd1;(13)CSiMe(3)) exhibit resonance-enhanced bands due to a(1)-symmetry fundamentals (nu(a) = 362, nu(b) = 397, nu(c) = 254 cm(-)(1) for the natural-abundance complex) and their overtones and combinations. The frequencies and relative intensities of the fundamentals are highly sensitive to isotopic substitution of the C&tbd1;CSiMe(3) ligands, but are insensitive to deuteration of the PMe(3) ligands. Nonresonance-Raman spectra (FT-Raman, 1064 nm excitation, crystalline samples) for the Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) compounds and for Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = H, D, Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) exhibit nu(a), nu(b), and nu(c) and numerous bands due to alkynyl- and phosphine-localized modes, the latter of which are assigned by comparisons to FT-Raman spectra of Mo(2)X(4)L(4) (X = Cl, Br, I; L = PMe(3), PMe(3)-d(9))(4) and Mo(2)Cl(4)(AsMe(3))(4). Valence force-field normal-coordinate calculations on the model compound Mo(2)(C&tbd1;CH)(4)P(4), using core force constants transferred from a calculation on Mo(2)Cl(4)P(4), show that nu(a), nu(b), and nu(c) arise from modes of strongly mixed nu(Mo(2)), nu(MoC), and lambda(MoCC) character. The relative intensities of the resonance-Raman bands due to nu(a), nu(b), and nu(c) reflect, at least in part, their nu(M(2)) character. In contrast, the force field shows that mixing of nu(M(2)) and nu(C&tbd1;C) is negligible. The three-mode mixing is expected to be a general feature for quadruply bonded complexes with unsaturated ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...