Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 232: 116628, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278946

RESUMO

AIMS: Adult T-cell leukemia (ATL) is a mature T-cell neoplasm associated with human T-cell lymphotropic virus (HTLV-1) infection. Major limitations in Doxorubicin (Dox) chemotherapy are tumor resistance and severe drug complications. Here, we combined Thymoquinone (TQ) with low concentrations of Dox and determined anticancer effects against ATL in cell culture and animal model. MAIN METHODS: HTLV-1 positive (HuT-102) and HTLV-1 negative (Jurkat) CD4+ malignant T-cell lines were treated with TQ, Dox and combinations. Viability and cell cycle effects were determined by MTT assay and flow cytometry analysis, respectively. Combination effects on mitochondrial membrane potential and generation of reactive oxygen species (ROS) were assessed. Expression levels of key cell death proteins were investigated by western blotting. A mouse xenograft model of ATL in NOD/SCID was used for testing drug effects and tumor tissues were stained for Ki67 and TUNEL. KEY FINDINGS: TQ and Dox caused greater inhibition of cell viability and increased sub-G1 cells in both cell lines compared to Dox or TQ alone. The combination induced apoptosis by increasing ROS and causing disruption of mitochondrial membrane potential. Pretreatment with N-acetyl cysteine (NAC) or pan caspase inhibitor significantly inhibited the apoptotic response suggesting that cell death is ROS- and caspase-dependent. TQ and Dox combination reduced tumor volume in NOD/SCID mice more significantly than single treatments through enhanced apoptosis without affecting the survival of mice. SIGNIFICANCE: Our combination model offers the possibility to use up to twofold lower doses of Dox against ATL while exhibiting the same cancer inhibitory effects.


Assuntos
Benzoquinonas/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzoquinonas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Leucemia-Linfoma de Células T do Adulto/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cell Proteomics ; 18(10): 1950-1966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332097

RESUMO

Mesenchymal stem/stromal cells (MSCs) are self-renewing multipotent cells with regenerative, secretory and immunomodulatory capabilities that are beneficial for the treatment of various diseases. To avoid the issues that come with using tissue-derived MSCs in therapy, MSCs may be generated by the differentiation of human embryonic stems cells (hESCs) in culture. However, the changes that occur during the differentiation process have not been comprehensively characterized. Here, we combined transcriptome, proteome and phosphoproteome profiling to perform an in-depth, multi-omics study of the hESCs-to-MSCs differentiation process. Based on RNA-to-protein correlation, we determined a set of high confidence genes that are important to differentiation. Among the earliest and strongest induced proteins with extensive differential phosphorylation was AHNAK, which we hypothesized to be a defining factor in MSC biology. We observed two distinct expression waves of developmental HOX genes and an AGO2-to-AGO3 switch in gene silencing. Exploring the kinetic of noncoding ORFs during differentiation, we mapped new functions to well annotated long noncoding RNAs (CARMN, MALAT, NEAT1, LINC00152) as well as new candidates which we identified to be important to the differentiation process. Phosphoproteome analysis revealed ESC and MSC-specific phosphorylation motifs with PAK2 and RAF1 as top predicted upstream kinases in MSCs. Our data represent a rich systems-level resource on ESC-to-MSC differentiation that will be useful for the study of stem cell biology.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/citologia , Proteômica/métodos , Diferenciação Celular , Células Cultivadas , Cromatografia Líquida , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Espectrometria de Massas , Células-Tronco Mesenquimais/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Análise de Sequência de RNA
3.
Sci Rep ; 8(1): 5858, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643415

RESUMO

Cancer metastasis causes approximately 90% of all cancer-related death and independent of the advancement of cancer therapy, a majority of late stage patients suffers from metastatic cancer. Metastasis implies cancer cell migration and invasion throughout the body. Migration requires the formation of pseudopodia in the direction of movement, but a detailed understanding of this process and accordingly strategies of prevention remain elusive. Here, we use quantitative proteomic profiling of human cancer pseudopodia to examine this mechanisms essential to metastasis formation, and identify potential candidates for pharmacological interference with the process. We demonstrate that Prohibitins (PHBs) are significantly enriched in the pseudopodia fraction derived from cancer cells, and knockdown of PHBs, as well as their chemical inhibition through Rocaglamide (Roc-A), efficiently reduces cancer cell migration.


Assuntos
Antineoplásicos/uso terapêutico , Metástase Neoplásica/prevenção & controle , Pseudópodes/metabolismo , Proteínas Repressoras/metabolismo , Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Proibitinas , Proteômica/métodos , Pseudópodes/efeitos dos fármacos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética
4.
J Proteome Res ; 12(7): 3233-45, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23734825

RESUMO

Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino acids by the feeders, interlaboratory variability of MEF preparation, and the overall complexity of the culture system are all of concern in conjunction with SILAC. We demonstrate a feeder-free SILAC culture system based on a customized version of a commonly used, chemically defined hESC medium developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein amounts required by proteomic work flows. It greatly enhances the usability of quantitative proteomics as a tool for the study of mechanisms underlying hESCs differentiation and self-renewal. Associated data have been deposited to the ProteomeXchange with the identifier PXD000151.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/metabolismo , Marcação por Isótopo , Proteômica/métodos , Aminoácidos/química , Animais , Diferenciação Celular , Meios de Cultura/química , Células-Tronco Embrionárias/citologia , Humanos , Camundongos
5.
Front Biosci (Elite Ed) ; 5(2): 706-19, 2013 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-23277025

RESUMO

We show that HTLV-1 negative leukemia cells are more sensitive to TQ due to higher levels of drug-induced reactive oxygen species (ROS). PreG1 population in HTLV-1 negative Jurkat and CEM was higher than HTLV-1 transformed HuT-102 and MT-2 cells. Peripheral blood mononuclear cells were more resistant. Hoechst staining indicated more features of apoptosis, namely nuclear blebs and shrunken nuclei in HuT-102 than Jurkat. A greater depletion of the antioxidant enzyme glutathione occurred in Jurkat, which consequently led to an increase in ROS, loss of mitochondrial membrane potential, cytochrome c release, activation of caspases 3 and 9, and cleavage of PARP. Treatment with z-VAD-fmk partially reversed TQ-induced apoptosis, suggesting a caspase-dependent mechanism. N-acetyl cysteine prevented apoptosis providing evidence that cell death is ROS-dependent. Catalase prevented apoptosis to a lesser extent than NAC. In summary, TQ induces apoptosis in adult T cell leukemia/lymphoma by decreasing glutathione and increasing ROS, and levels of ROS underlie the differential cellular response to TQ. Our data suggest a potential therapeutic role for TQ in sensitizing HTLV-I-negative T-cell lymphomas.


Assuntos
Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Linfoma de Células T/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/efeitos dos fármacos , Clorometilcetonas de Aminoácidos , Análise de Variância , Animais , Catalase , Glutationa/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Células Jurkat , Linfoma de Células T/imunologia , Linfoma de Células T/metabolismo , Linfoma de Células T/virologia , Potencial da Membrana Mitocondrial/fisiologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...