Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(9): 1626-1635, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35895596

RESUMO

Sustained off-resonance irradiation-cross-sectional areas by Fourier transform ion cyclotron resonance mass spectrometry (SORI-CRAFTI) is an FTICR-MS strategy to collisionally activate precursor ions and then measure their ion-neutral collision cross sections, as well as those of selected products, at the same time. We benchmarked SORI-CRAFTI using protonated leucine-enkephalin, to excellent agreement (typically within 1-2%) with previous studies performed via collision-induced dissociation-ion mobility (CID-IMS). SORI-CRAFTI was then applied to alkali metal-cationized leucine-enkephalin and compared with CID-IMS via precursor/product cross-section ratios. Qualitative agreement between SORI-CRAFTI and CID-IMS was excellent (again, usually within 1-2%); however, neither SORI-CRAFTI nor CID-IMS could determine if metalated leucine-enkephalin was present in its canonical or zwitterionic form. When SORI-CRAFTI was used on [2.2.2]-cryptand+Cs+, SORI activation resulted in a 5% decrease in collision cross section, consistent with migration of the externally bound Cs+ into the cryptand's cavity and similar to the cross section observed when electrospraying from an isopropanol-rich solvent. Thus, SORI-CRAFTI is useful for studying gas-phase ion chemistry of small- to medium-sized molecules and host-guest systems.


Assuntos
Éteres de Coroa , Encefalina Leucina , Íons/química , Leucina , Espectrometria de Massas/métodos
2.
J Am Soc Mass Spectrom ; 33(1): 131-140, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928604

RESUMO

Determination of collision cross sections (CCS) using the cross-sectional areas by the Fourier transform ion cyclotron resonance (CRAFTI) technique is limited by the requirement that accurate pressures in the trapping cell of the mass spectrometer must be known. Experiments must also be performed in the energetic hard-sphere regime such that ions decohere after single collisions with neutrals; this limits application to ions that are not much more massive than the neutrals. To mitigate these problems, we have resonantly excited two (or more) ions of different m/z to the same center-of-mass kinetic energy in a single experiment, subjecting them to identical neutral pressures. We term this approach "multi-CRAFTI". This facilitates measurement of relative CCS without requiring knowledge of the pressure and enables determination of absolute CCS using internal standards. Experiments with tetraalkylammonium ions yield CCS in reasonable agreement with the one-ion-at-a-time CRAFTI approach and with ion mobility spectrometry (IMS) when differences in collision energetics are taken into account (multi-CRAFTI generally yields smaller CCS than does IMS due to the higher collision energies employed in multi-CRAFTI). Comparison of multi-CRAFTI and IMS results with CCS calculated from structures computed at the M06-2X/6-31+G* level of theory using projection approximation or trajectory method values, respectively, indicates that the computed structures have CCS increasingly smaller than the experimental CCS as m/z increases, implying the computational model overestimates interactions between the alkyl arms. For ions that undergo similar collisional decoherence processes, relative CCS reach constant values at lower collision energies than do absolute CCS values, suggesting a means of increasing the accessible upper m/z limit by employing multi-CRAFTI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...