Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959082

RESUMO

The effects of two ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and 1-butyl-1-methyl pyrrolidinium tetrafluoroborate ([bmp]BF4), on a mixture of phospholipids (PLs) 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) (6:3:1, M/M/M, 70% PL) in combination with 30 mol % cholesterol (CHOL) were investigated in the form of a solvent-spread monolayer and bilayer (vesicle). Surface pressure (π)-area (A) isotherm studies, using a Langmuir surface balance, revealed the formation of an expanded monolayer, while the cationic moiety of the IL molecules could electrostatically and hydrophobically bind to the PLs on the palisade layer. Turbidity, dynamic light scattering (size, ζ-potential, and polydispersity index), electron microscopy, small-angle X-ray/neutron scattering, fluorescence spectroscopy, and differential scanning calorimetric studies were carried out to evaluate the effects of IL on the structural organization of bilayer in the vesicles. The ILs could induce vesicle aggregation by acting as a "glue" at lower concentrations (<1.5 mM), while at higher concentrations, the ILs disrupt the bilayer structure. Besides, ILs could result in the thinning of the bilayer, evidenced from the scattering studies. Steady-state fluorescence anisotropy and lifetime studies suggest asymmetric insertion of ILs into the lipid bilayer. MTT assay using human blood lymphocytes indicates the safe application of vesicles in the presence of ILs, with a minimal toxicity of up to 2.5 mM IL in the dispersion. These results are proposed to have applications in the field of drug delivery systems with benign environmental impact.

2.
Phys Chem Chem Phys ; 26(13): 10037-10053, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482924

RESUMO

A phenolphthalein-based Schiff base, 3,3-bis-{4-hydroxy-3-[(pyridine-2-ylmethylimino)-methyl]-phenyl}-3H-isobenzofuran-1-one (PAP), has been synthesized and used for selective fluorescence 'turn on' and 'turn off' sensing of Zn2+ and PO43- respectively. The limit of detection using the 3σ method for Zn2+ is found to be 19.3 nM and that for PO43- is 8.3 µM. The sensing mechanism of PAP for Zn2+ ions has been explained by 1H NMR, 13C NMR, TRPL, ESI-MS, FT-IR, and DFT based calculations. Taking advantage of this fluorescence 'on-off' behavior of PAP in the sequential presence of Zn2+ and PO43- a two input fuzzy logic (FL) operation has been constructed. The chemosensor PAP can thus act as a metal ion and anion responsive molecular switch, and its corresponding emission intensity is used to mimic numerous FL functions. To replace various expensive, time-consuming experimental procedures, we implemented machine learning soft computing tools, such as fuzzy-logic, artificial neural networks (ANNs), and adaptive neuro-fuzzy inference systems (ANFIS), to correlate as well as predict the fluorescence intensity in the presence of any equivalent ratio of Zn2+ and PO43-. The statistical performance measures (MSE and RMSE, for example) show that the projected values of the cation and anion sensing data by the ANFIS network are the best and closer to the experimental values.

3.
J Mol Model ; 29(11): 351, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889349

RESUMO

CONTEXT: Quantum mechanical calculations involving electron correlation, frequency dispersion, and solvent effects were carried out to examine the second-order nonlinear optical response of various acceptor, X (-CF3, -CN, -NO2) substituted in N,N-dimethylaniline (DMA) and julolidine(JLD). Here, both DMA and JLD acts as donor and the three substituted groups, X (-CF3, -CN and -NO2) at the para position of both the ring systems as acceptor. The NLO response (ßHRS) of -CF3 and -CN substituted DMA and JLD is relatively lower compared to DMA-NO2 and JLD-NO2. The charge distribution is found higher in case of -NO2 substituted DMA and JLD (±443 and ±449) compared to their -CF3 or -CN substitution. Electronic characteristics such as UV-Vis absorption spectra, crucial excited state parameters and charge transfer contribution to ßHRS have been used to explain the NLO parameter of DMA-X and JLD-X. Variation of the incident optical frequency of light shows fluctuation of ßHRS value and highest values of ßHRS are obtain at the λmax frequency of each compound. Solvent polarity variation study on ßHRS shows that ßHRS varies linearly with the Kirkwood-Onsagar dielectric factor (D). METHODS: All computational studies have been carried out using density functional theory (DFT) based method. Since CAM-B3LYP based hybrid functional improves the asymptotic behavior of the exchange interaction by dividing into short-range and long-range components, first hyperpolarizability values in the present study were computed using DFT/ CAM-B3LYP/ 6-31G+(d,p) level of theory.

5.
J Fluoresc ; 33(6): 2131-2144, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37060429

RESUMO

A designed aggregation-induced emission enhancement (AIEE) active fluorescence probe 2,3-Bis-[(2-hydroxy-napthalen-1-ylmethylene)-amino]-but-2-enedinitrile (L) was synthesized via one step condensation method. The probe shows swift sensitivity and selectivity toward Al3+over other relevant metal ions and also exhibits significant AIEE phenomena in methanol/water mixture. Significant enhancement of fluorescence intensity is triggered via chelation-enhanced fluorescence through complex (Al3+-L) formation. A 2:1 metal to ligand ratio is observed from Job's plot based on UV - Vis absorption titration and detection limit (LOD) is found as low as 31.14 nM. Moreover, 1H NMR titrations and fluorescence reversibility by adding Al3+ and EDTA sequentially had been performed to establish the binding site of sensor complex (Al3+-L). Time-resolved photoluminescence, dynamic light scattering, optical microscopy, and on-site visualization studies have been performed to understand the AIEE mechanism of L in different volume percentage of water and methanol mixture. An INHIBIT molecular logic gate has been constructed utilizing the fluorescence behavior of the probe, L in presence of Al3+ and strong chelating ligand EDTA.

6.
Photochem Photobiol Sci ; 22(6): 1491-1503, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805447

RESUMO

Fluorescent chemosensor, 3-(Anthracen-2-yliminomethyl)-benzene-1,2-diol (ANB) has been synthesized by one-step condensation of 2-aminoanthracene and 2,3-dihydroxybenzaldehyde and characterized using 1H-NMR, FT-IR and Mass spectroscopic techniques. The probe ANB was found to be an efficient 'turn-on' fluorescence chemosensor for the selective detection of Al3+ ion over other metal ions in an aqueous solution. The chemosensor exhibits ~ 27-fold enhancement of emission intensity in presence of Al3+ ion. Fluorescence quantum values for ANB and (Al3+-ANB)-complex are 0.004 and 0.097, respectively. In addition, the binding constant and the limit of detection were found to be 1.22 × 104 M-1 and 0.391 µM, respectively. The chemosensor ANB binds to Al3+ ions in 2:1 stoichiometric ratio which was supported by Job's plot, 1H-NMR titration and florescence titration. Fluorescence reversibility of the sensor complex was well established by adding EDTA in the same condition and a molecular INHIBIT logic gate was fabricated using this reversible nature of the sensor complex. Additionally, the chemosensor ANB shows a novel aggregation-induced enhanced emission phenomenon, where the aggregate hydrosol of ANB shows enhance emission intensity.


Assuntos
Corantes Fluorescentes , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes Fluorescentes/química , Íons , Espectroscopia de Ressonância Magnética
7.
J Fluoresc ; 33(2): 517-526, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36449225

RESUMO

A multi responsive fluorescent probe, N',2-bis(E-4-(diethylamino)-2-hydroxybenzylidene)hydrazine-1-carbothiohydrazideV(H2L) has been synthesized through one step condensation method. Probe, H2L shows 'turn-on' dual sensing properties towards Cd2+ and H2AsO4- at two distinct wavelength. The probe (H2L) is spectroscopically characterized and the chemo-sensing mechanism has been demonstrated through 1H NMR, absorption, steady state and time resolved emission study. The most promising advantage of the probe is its application in the one-pot detection of Cd2+ (λem = 462 nm) and H2AsO4-(λem = 492 nm) where intense emission appears at two different wavelengths and the observed limit of detection (LOD) of H2L towards Cd2+ and H2AsO4- are 2.67 × 10-8 M and 5.14 × 10-6 M respectively. Further the 'turn-on' emission property of H2L towards Cd2+ is applied to construct INHIBIT logic gate.


Assuntos
Cádmio , Água , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Espectroscopia de Ressonância Magnética
9.
J Fluoresc ; 32(3): 1059-1071, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303237

RESUMO

A Fluorescent chemosensor based on pyrene scaffold, 5-diethylamino-2-(pyren-1-yliminomethyl)-phenol (PDS) is synthesized using condensation method. It displays novel aggregation-induced emission (AIE) phenomena in its aggregated/solid state. The AIE characteristic of PDS is studied in CH3CN/H2O mixtures at different volume percentage of water and morphology of the aggregated particles are investigated by DLS and optical fluorescence microscopic study. The probe is aggregated into ordered one-dimensional (1-D) rod like microcrystals and exhibit high efficiency of solid-state emission with green colour. By taking advantage of its interesting AIE feature, the aggregated hydrosol has been utilized as 'off-on' type fluorescence switching chemosensor with superb selectivity and sensitivity towards Cu2+ions and the limit of detection (LOD) was calculated as low as 6.3 µM. A high Stern-Volmer quenching constant was estimated to be 2.88 × 105 M-1. The proposed chemosensor with AIE feature reveals a prospective view for the on-site visual recognition of Cu2+ ions in fluorescent paper strips and the synthesized probe is also exploited to find out the concentration of Cu2+ions in real water samples.


Assuntos
Cobre , Corantes Fluorescentes , Cobre/química , Corantes Fluorescentes/química , Íons , Estudos Prospectivos , Pirenos , Espectrometria de Fluorescência , Água/química
10.
Anal Methods ; 13(37): 4266-4279, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34591947

RESUMO

For practical applications, the development of bio-compatible organic molecules as p-block ion chemosensors is critical. Herein, we report the single crystal (SC) of new pyridine-pyrazole derived Al3+ sensor H2PPC [(Z)-N'-(2,3-dihydroxybenzylidene)-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazide] as well as its Cu-complex SC. The probe exhibits an "off-on" fluorescence response towards Al3+ ions, and this has been modulated with different solvents. For selective detection of Al3+ ions, a special coordination pocket in the structural backbone is advantageous. The chemosensor exhibits a submicromolar detection level (LOD = 4.78 µM) for Al3+. The density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of H2PPC and [Al(HPP)2]+ (1) reveal that a change of the structural conformation of probe H2PPC upon complexation causes the pyrazole and pyridine units to create a specific cavity to tether Al3+, and consequently H2PPC proves to be a promising molecule for Al3+ detection. Furthermore, the probe has been successfully used to evaluate Al3+ as a low-cost kit using filter paper strips, and the in situ Al3+ ion imaging in Vero cells as well as A549 cell lines shows the sensor's nuclear envelope penetrability, indicating that it has great potential for biological and environmental applications.


Assuntos
Corantes Fluorescentes , Pirazóis , Animais , Chlorocebus aethiops , Piridinas , Espectrometria de Fluorescência , Células Vero
11.
J Phys Chem A ; 125(7): 1490-1504, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33565874

RESUMO

The absence of d-orbital electrons or presence of full-filled d-orbital electrons in metal ions is a well-known Achilles' heel problem for the detection of these metal ions by a simple UV-visible study. For this reason, detection of metal ions such as Al3+ with no d-orbital electrons or Zn2+ with filled d-orbital electrons is a challenging task. Herein, we report a 2-naphthol-based fluorescent probe [1-((E)-((E)-(5-bromo-2-hydroxybenzylidene)hydrazono)methyl)naphthalen-2-ol] (H2L) that has been used to sense and discriminate Al3+ and Zn2+ via solvent regulation. The probe exhibits excellent selectivity and swift sensitivity toward Al3+ in MeOH-water (9:1, v/v) and toward Zn2+ in dimethyl sulfoxide (DMSO)-water (9:1, v/v) among various metal ions. The respective detection limit is found to be 9.78 and 3.65 µM. The sensing mechanism is attributed to multiple processes, viz., the inhibition of photo-induced electron transfer (PET) along with the introduction of chelation-enhanced emission (CHEF) and excited-state intramolecular proton transfer (ESIPT) inhibition, which are experimentally well verified by UV-vis absorption spectroscopy, emission spectroscopy, and NMR spectroscopy. The probe shows aggregation-induced emissive (AIE) response in ≥70% aqueous media as well as in the solid state. The experimental results are well corroborated by time-resolved photoluminescence (TRPL) and density functional theory (DFT) calculations. An advanced-level OR-AND-NOT logic gate has been constructed from a different chemical combinational input and emission output. The reversible recognition of both Al3+ in MeOH-water (9:1, v/v) and Zn2+ in DMSO-water (9:1, v/v) is also ascertained in the presence of Na2EDTA, enabling the construction of a molecular memory device. The probe H2L also detects intracellular Al3+/Zn2+ ions in Hela cells. Altogether, our fundamental findings will pave the way for designing and synthesis of unique chemosensors that could be used for cell imaging studies as well as constructing molecular logic gates.

12.
J Fluoresc ; 31(2): 315-325, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33405019

RESUMO

1-(Pyridin-2-yl-hydrazonomethyl)-naphthalen-2-ol (PNOH) is a naphthalene-based fluorescence dual chemo-sensor for Al3+ and Zn2+. The probe (PNOH) is spectroscopically characterised and the chemo-sensing mechanism has been demonstrated through 1H NMR, absorption and both steady state and time resolved fluorescence study. The 'turn-on' luminescence property of PNOH is used for the selective detection of trace amount of Al3+and Zn2+via chelation enhanced fluorescence (CHEF) through complex formation. The 1:1 stoichiometry of each sensor-metal complex is observed from Job's plot based on UV-Vis titration. Most promising advantage of the probe (PNOH) is its application in the one-pot detection of Al3+ (λem- 460 nm) and Zn2+ (λem- 510 nm) exciting at same wavelength (λex- 420 nm) while high intense emission appears at two different wavelengths. Limit of detection (LOD) of PNOH towards Al3+ & Zn2+ are found to be 60 nM & 365 nM respectively. Real water sample analysis has also been demonstrated by using the probe PNOH.

13.
Anal Sci Adv ; 2(9-10): 447-463, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38716442

RESUMO

Counter anion-triggered metal ion detection has been rarely reported by fluorimetric method. To address this challenging issue, a fluorescent probe (H2L) has been synthesized from bromo-salicylaldehyde and hydrazine hydrate, and structurally characterized by single crystal X-ray diffraction. The probe shows very weak fluorescence itself. However, its emission intensity increases in the presence of Zn2+ over other metal ions. Surprisingly, the emission profile of this probe in presence of Zn2+ is augmented only when acetate anion (OAc¯) is present as counter anion, that allows for precise quantitative analysis by spectroscopic studies. The compositions and complexation among the probe, Zn2+ ion, and OAc¯ are supported by ESI-MS, 1H-NMR, and Job's plot. Based on these studies, it is confirmed that the binding ratio between probe: metal is 1:2 and the detection limit (LOD) for the Zn2+ is 2.18 µM. The probe is capable of recognizing Zn2+ ion in the wide range of pH∼6.5-9.5, and it could be efficiently recycled by EDTA. Furthermore, the combinatorial molecular logic gate and memory device have been constructed from the fluorescent behavior of H2L with Zn2+, OAc¯, and EDTA input as based on NOT and AND gates. Interestingly, the aggregation-induced emission (AIEE) phenomenon is also perceived with greater than 50% water content in organic water mixtures, which are then useful for the detection of picric acid often used as explosive.

14.
Photochem Photobiol Sci ; 19(5): 681-694, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32329762

RESUMO

A simple antipyrine based fluorescent probe, 4-[(2-hydroxy-3-methoxy-benzylidene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (OVAP), has been successfully synthesized using a one-step condensation method. It exhibits dual sensing properties toward Al3+ and Zn2+ in the presence of other relevant metal ions and also displays novel aggregation induced emission enhancement (AIEE) characteristics in its aggregated/solid state. Aggregated OVAP microstructures with interesting morphologies have been synthesized using SDS as a morphology directing agent. Morphologies of the particles are characterized using optical microscopy. Photophysical properties of the as-synthesized OVAP hydrosol are studied using UV-Vis absorption, steady state and time resolved fluorescence spectroscopy. The 'turn on' luminescence property of OVAP is used for the selective detection of trace amounts of Al3+ and Zn2+ and a significant turn on fluorescence enhancement over ∼100-fold is triggered via chelation-enhanced fluorescence (CHEF) through complex formation. The 1 : 1 stoichiometry of each sensor metal ion complex is observed from Job's plot based on UV-Vis absorption titration. The LODs for Al3+ and Zn2+ are found to be 1.05 nM and 2.35 nM, respectively. Notably, the sensor, OVAP, is further demonstrated using a molecular INHIBIT logic gate.


Assuntos
Alumínio/análise , Antipirina/química , Corantes Fluorescentes/química , Zinco/análise , Antipirina/síntese química , Corantes Fluorescentes/síntese química , Espectrometria de Fluorescência
15.
Photochem Photobiol Sci ; 18(11): 2717-2729, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31560015

RESUMO

A 2,6-diformyl-p-cresol (DFC)-4-amino antipyrine (AP) based dual signaling fluorescent Schiff base ligand (DFCAP) is found to exhibit colorimetric and fluorescence turn on selective sensing towards metal ions, Zn2+ and Al3+. It also exhibits a significant aggregation induced emission (AIE) phenomenon by controlling the water-THF solvent ratio which provides robust green emissive fluorogenic aggregates with well-defined morphologies. Turn-on fluorescence enhancements as high as 195 fold and 168 fold in methanol for Al3+ and Zn2+ at 480 nm and 508 nm, respectively, were noticed. The binding constants and stoichiometry determined from the fluorescence titration data are K = 7.63 × 104 M-1 and 3.42 × 104 M-1 and 1 : 1 complexation for both Al3+ and Zn2+ respectively, supported by Job's method. DFCAP shows high sensitivity towards the detection of Zn2+ and Al3+ ions with very low detection limit values of ca. ∼21 nM and 30 nM respectively. Besides by applying its attractive AIE feature, the green emissive hydrosol functions as a good chemosensor with high sensitivity for a selected explosive TNP through ground state complexation with a LOD value of ca. ∼1.74 µM and especially a high Stern-Volmer quenching constant of ca. ∼4.14 × 105 M-1. For instant 'naked eye' response for the trace detection of TNP in the solution state, we fabricated a simple paper strip that could detect TNP on-site in a fast, inexpensive and simple way.

16.
Photochem Photobiol Sci ; 18(6): 1342-1349, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30912544

RESUMO

Rhodamine and its derivatives have been widely used in designing fluorescent 'turn on' cation sensors, while very few rhodamine based fluorescent probes have been reported to date for the detection of anions in water. In this article, a new rhodamine based facile and convenient 'turn on' fluorescent chemosensor 2-(2-(1-hydroxynaphthyllideneamino)ethyl)-3',6'-bis(diethylamino)spiro [isoindoline-1,9'-xanthen]-3-one (RAHN) has been developed by Schiff base condensation and characterized by standard techniques for selective detection of bisulfite anions in water. A faintly yellow colour solution of RAHN turns pink upon addition of bisulfite. Again RAHN is weakly emissive in solution but becomes strongly emissive on addition of bisulfite and the emission intensity increases gradually in the presence of increasing concentration of bisulfite. No other analytes can cause emission enhancement of RAHN, suggesting the selectivity of the probe towards bisulfite. The detection limit for bisulfite was found to be ∼0.4 µM.

17.
J Family Med Prim Care ; 6(3): 672-673, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29417032

RESUMO

N, N'-dimethyl-4, 4'-bipyridinium dichloride (paraquat) is a widely used synthetic, nonselective contact herbicide. Ingestion of toxic doses of paraquat can be fatal with life-threatening effects on the lungs, gastrointestinal (GI) tract, kidney, liver, heart, and other organs. Till date, there are no specific antidotes and none of the current treatments have proven efficacious. The prognosis is uniformly poor worldwide, including those who treat aggressively with multimodal therapies. Long-term survivors are few, and have GI and pulmonary complications. Hence, prevention needs to be the utmost priority, and on exposure, aggressive decontamination should be initiated. Although it is a very common herbicide, there are very few cases reported from India and awareness among people needs to be widened.

18.
Artigo em Inglês | MEDLINE | ID: mdl-26720419

RESUMO

Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.

19.
J Photochem Photobiol B ; 156: 1-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773494

RESUMO

α-Napthoflavone (ANF) microstructures of various morphologies were synthesized using reprecipitation method. Sodium Dodecyl Sulfate (SDS) was used as morphology directing agent. The morphologies of the particles were characterized using optical and scanning electron microscopy (SEM). Single crystal data of ANF suggests that the aromatic units of ANF are in parallel slipped conformation in its aggregated form. Photophysical properties of aggregated ANF hydrosol were studied using UV-Vis absorption, steady state and time resolved spectroscopy. Red shift and broadening of UV-Vis spectra of ANF hydrosol are explained due to strong π-π and H-π interactions among the neighboring ANF molecules within the aggregated microstructures. Though ANF is non-luminescent in good solvent, a strong emission is observed in its aggregated state. This aggregation induced emission (AIE) has been explained due to restriction of intramoleculer rotation and large amplitude vibrational modes of ANF in its aggregated state. Our Photophysical study also reveals that AIE effect decreases after an optimum concentration of ANF and this has been explained due to softening of crystal lattice. Cytotoxicity of ANF hydrosol was examined to get an idea of the toxic level of this hydrosol toward cultured normal human cells. It is observed that ANF hydrosol may draw beneficial effect in biological application as it has no higher toxic activity but has antioxidant property.


Assuntos
Benzoflavonas/farmacologia , Benzoflavonas/química , Benzoflavonas/toxicidade , Cristalografia por Raios X , Corantes Fluorescentes , Humanos , Estrutura Molecular , Dodecilsulfato de Sódio/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
20.
Phys Chem Chem Phys ; 18(10): 7055-67, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26608816

RESUMO

A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...