Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(7): 076902, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427888

RESUMO

We study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe_{2}/WS_{2} heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe_{2}/WS_{2} heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field. Finally, we develop an effective theoretical model combining resonant and nonresonant contributions to moiré potentials to explain the observed phenomenology, and highlight the relevance of interlayer coupling for structures with close energetic band alignment as in MoSe_{2}/WS_{2}.

2.
Proc Natl Acad Sci U S A ; 119(32): e2203531119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921437

RESUMO

We show that a Bose-Einstein condensate consisting of dark excitons forms in GaAs coupled quantum wells at low temperatures. We find that the condensate extends over hundreds of micrometers, well beyond the optical excitation region, and is limited only by the boundaries of the mesa. We show that the condensate density is determined by spin-flipping collisions among the excitons, which convert dark excitons into bright ones. The suppression of this process at low temperature yields a density buildup, manifested as a temperature-dependent blueshift of the exciton emission line. Measurements under an in-plane magnetic field allow us to preferentially modify the bright exciton density and determine their role in the system dynamics. We find that their interaction with the condensate leads to its depletion. We present a simple rate-equations model, which well reproduces the observed temperature, power, and magnetic-field dependence of the exciton density.

3.
Phys Rev Lett ; 120(4): 047402, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437436

RESUMO

We study the exciton gas-liquid transition in GaAs/AlGaAs coupled quantum wells. Below a critical temperature, T_{C}=4.8 K, and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T≲1.1 K, similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1≲T<4.8 K. Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T

4.
ACS Nano ; 11(2): 1641-1648, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28071887

RESUMO

Fano resonance is observed in a wide range of micro- and nano-optical systems and has been a subject of intensive investigations due to its numerous potential applications. Methods that can control or modulate Fano resonance by tuning some experimentally accessible parameters are highly desirable for realistic applications. Here we present a simple yet elegant approach using the Mueller matrix formalism for controlling the Fano interference effect and engineering the resulting asymmetric spectral line shape in an anisotropic optical system. The approach is founded on a generalized model of anisotropic Fano resonance, which relates the spectral asymmetry to physically meaningful and experimentally accessible parameters of interference, namely, the Fano phase shift and the relative amplitudes of the interfering modes. The differences in these parameters between orthogonal linear polarizations in an anisotropic system are exploited to desirably tune the Fano spectral asymmetry using pre- and postselection of optimized polarization states. The concept is demonstrated on waveguided plasmonic crystals using Mueller matrix-based polarization analysis. The approach enabled tailoring of several exotic regimes of Fano resonance in a single device, including the complete reversal of the spectral asymmetry, and shows potential for applications involving control and manipulation of electromagnetic waves at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...