Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animal ; 17(4): 100726, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921381

RESUMO

Methane (CH4) produced by ruminants is a significant source of greenhouse gases from agriculture in the United Kingdom (UK), accounting for approximately 50% of the emissions in this sector. Ration modification is linked to changes in rumen fermentation and can be an effective means of CH4 abatement. In temperate climate countries, forage silage represents a major feed component for cattle during the housing period. The objective of this study was, therefore, to compare enteric CH4 emission from cattle offered silage produced from different types of grassland. Beef cattle, steers (n = 89) and heifers (n = 88) with average liveweight (LW) of 328 ± 57.1 kg were evaluated during two housing seasons (2016-2017 and 2017-2018) from November to April, at the Rothamsted Research North Wyke Farm Platform (UK). The treatments corresponded to three diet types, comprising silage harvested from three different pastures: MRG, monoculture of perennial ryegrass (PRG, Lolium perenne L.cv. AberMagic), bred to express the high-sugar phenotype; RG-WC, a mixed sward comprised of the same perennial ryegrass cultivar with white clover (Trifolium repens L.) with a target clover proportion of 30% as land cover; and permanent pasture (PP) dominated by PRG and a small number of non-introduced species. MRG and PP received 160-200 kg N/ha/year. Cattle were weighed every 30 days, and the enteric CH4 emission was determined using GreenFeed automated systems. No significant differences in enteric CH4 emission per head or per kg LW were observed between treatments. However, emission expressed per average daily gain (ADG) in LW was greater (P < 0.001) for MRG compared with RG-WC and PP, at 270, 248 and 235 g CH4/kg ADG, respectively. This related to a lower ADG (P = 0.041) for the animals fed MRG silage compared with RG-WC and PP which were similar, with respective values of 0.67, 0.71 and 0.74 kg/day. The forages compared in this study showed little or no potential to reduce enteric CH4 emission when fed as silage to growing beef cattle during the winter housing period.


Assuntos
Lolium , Trifolium , Bovinos , Animais , Feminino , Silagem/análise , Dieta/veterinária , Metano , Habitação , Melhoramento Vegetal , Ruminantes , Rúmen , Ração Animal/análise
2.
Agric Syst ; 195: 103307, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34980941

RESUMO

CONTEXT: Ruminant livestock make an important contribution to global food security by converting feed that is unsuitable for human consumption into high value food protein, demand for which is currently increasing at an unprecedented rate because of increasing global population and income levels. Factors affecting production efficiency, product quality, and consumer acceptability, such as animal fertility, health and welfare, will ultimately define the sustainability of ruminant production systems. These more complex systems can be developed and analysed by using models that can predict system responses to environment and management. OBJECTIVE: We present a framework that dynamically models, using a process-based and mechanistic approach, animal and grass growth, nutrient cycling and water redistribution in a soil profile taking into account the effects of animal genotype, climate, feed quality and quantity on livestock production, greenhouse gas emissions, water use and quality, and nutrient cycling in a grazing system. METHODS: A component to estimate ruminant animal growth was developed and integrated with the existing components of the SPACSYS model. Intake of herbage and/or concentrates and partitioning of the energy and protein contained in consumed herbage and/or concentrates were simulated in the component. Simulated animal growth was validated using liveweight data from over 200 finishing beef cattle and 900 lambs collected from the North Wyke Farm Platform (NWFP) in southwest England, UK, between 2011 and 2018. Annual nitrous oxide (N2O), ammonia, methane and carbon dioxide emissions from individual fields were simulated based on previous validated parameters. RESULTS AND CONCLUSIONS: A series of statistical indicators demonstrated that the model could simulate liveweight gain of beef cattle and lamb. Simulated nitrogen (N) cycling estimated N input of 190 to 260 kg ha-1, of which 37-61% was removed from the fields either as silage or animal intake, 15-26% was lost through surface runoff or lateral drainage and 1.14% was emitted to the atmosphere as N2O. About 13% of the manure N applied to the NWFP and excreta N deposited at grazing was lost via ammonia volatilisation. SIGNIFICANCE: The extended model has the potential to investigate the responses of the system on and consequences of a range of agronomic management and grazing strategies. However, modelling of multi-species swards needs to be validated including the dynamics of individual species in the swards, preferential selection by grazing animals and the impact on animal growth and nutrient flows.

3.
Nature ; 593(7860): 548-552, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33882562

RESUMO

Global peatlands store more carbon than is naturally present in the atmosphere1,2. However, many peatlands are under pressure from drainage-based agriculture, plantation development and fire, with the equivalent of around 3 per cent of all anthropogenic greenhouse gases emitted from drained peatland3-5. Efforts to curb such emissions are intensifying through the conservation of undrained peatlands and re-wetting of drained systems6. Here we report eddy covariance data for carbon dioxide from 16 locations and static chamber measurements for methane from 41 locations in the UK and Ireland. We combine these with published data from sites across all major peatland biomes. We find that the mean annual effective water table depth (WTDe; that is, the average depth of the aerated peat layer) overrides all other ecosystem- and management-related controls on greenhouse gas fluxes. We estimate that every 10 centimetres of reduction in WTDe could reduce the net warming impact of CO2 and CH4 emissions (100-year global warming potentials) by the equivalent of at least 3 tonnes of CO2 per hectare per year, until WTDe is less than 30 centimetres. Raising water levels further would continue to have a net cooling effect until WTDe is within 10 centimetres of the surface. Our results suggest that greenhouse gas emissions from peatlands drained for agriculture could be greatly reduced without necessarily halting their productive use. Halving WTDe in all drained agricultural peatlands, for example, could reduce emissions by the equivalent of over 1 per cent of global anthropogenic emissions.

4.
Sci Total Environ ; 767: 144350, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434843

RESUMO

The effect of different fertilization strategies on changes in soil organic carbon (SOC) largely depends on the current status of a given agricultural region. We analysed the results of 90 long-term field trials (20-37 years) in Chinese croplands to determine the effects of fertilization strategies [i.e., no fertilizer (CK), chemical fertilizer (NPK), manure only (M) and manure plus chemical fertilizers (NPKM)] on soil organic carbon stock (SOCs) at 0-20 cm depth in the North (NC), Northeast (NEC), Northwest (NWC) and South (SC) China. Compared with initial values, SOCs increased by 24-68% and 24-74% under NPKM and M applications, respectively, over the experimental periods. Furthermore, final SOCs under NPKM in NEC and NWC were significantly higher than those under other treatments, but there was no significant difference between NPKM and M in SC and no significant differences among fertilizer treatments in NC. Average SOC stock change rates (SOCr) were positive under all treatments for all regions except for CK and NPK in NEC, which were negative. There were regional differences in treatment effects: all treatments showed significantly different rates in NC and NWC, whereas there were no significant differences between the M and NPKM in NEC and SC. Random forest (RF) modeling showed that among the selected variables initial SOCs was the most important in accounting for differences in SOCr, followed by soil bulk density, mean annual temperature and precipitation for all treatments. Soil total nitrogen content was also an important explanatory variable for SOCr for CK and NPK, and soil pH for M. This study has highlighted the main driving variables of SOC change which can be of use in optimizing fertilization strategies, by taking account of the baseline SOCs status and environmental factors for different regions, to minimize soil carbon emissions while maximizing carbon sequestration in soils.

5.
Agric Ecosyst Environ ; 283: 106572, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31680709

RESUMO

There is currently much debate around the environmental implications of ruminant farming and a need for robust data on nitrogen (N) and carbon (C) fluxes from beef and sheep grazing systems. Here we use data collected from the North Wyke Farm Platform along with the SPACSYS model to examine the N and C budgets and the N use efficiency (NUE) of grassland swards at different stages of establishment. We assessed the transition from permanent pasture (PP) to a high-sugar grass (HSG), and a mixed sward of HSG with white clover (HSGC), identifying data specifically for the reseed (RS) years and the first year following RS (HSG-T and HSGC-T). Dominant fluxes for the N budget were N offtake as cut herbage and via livestock grazing, chemical-N fertiliser and N leaching at 88-280, 15-177, and 36-92 kg N ha-1 a-1, respectively. Net primary productivity, soil respiration and C offtake as cut herbage and via livestock grazing at 1.9-15.9, 1.74-12.5, and 0.34-11.7 t C ha-1 a-1, respectively, were the major C fluxes. No significant differences were found between the productivity of any of the swards apart from in the RS year of establishment. However, NUE of the livestock production system was significantly greater for the HSGC and HSGC-T swards at 32 and 42% compared to all other swards, associated with the low chemical-N fertiliser inputs to these clover-containing swards. Our findings demonstrate opportunities for improving NUE in grazing systems, but also the importance of setting realistic NUE targets for these systems to provide achievable goals for land-managers.

6.
Environ Int ; 128: 362-370, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078005

RESUMO

Trapezoidal integration by linear interpolation of data points is by far the most commonly used method of cumulative flux calculations of nitrous oxide (N2O) in studies that use flux chambers; however, this method is incapable of providing accurate uncertainty estimates. A Bayesian approach was used to calculate N2O emission factors (EFs) and their associated uncertainties from flux chamber measurements made after the application of nitrogen fertilisers, in the form of ammonium nitrate (AN), urea (Ur) and urea treated with Agrotain® urease inhibitor (UI) at four grassland sites in the UK. The comparison between the cumulative fluxes estimated using the Bayesian and linear interpolation methods were broadly similar (R2 = 0.79); however, the Bayesian method was capable of providing realistic uncertainties when a limited number of data points is available. The study reports mean EF values (and 95% confidence intervals) of 0.60 ±â€¯0.63, 0.29 ±â€¯0.22 and 0.26 ±â€¯0.17% of applied N emitted as N2O for the AN, Ur and UI treatments, respectively. There was no significant difference between N2O emissions from the Ur and UI treatments. In the case of the automatic chamber data collected at one site in this study, the data did not fit the log-normal model, implying that more complex models may be needed, particularly for measurement data with high temporal resolution.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Teorema de Bayes , Inglaterra , Pradaria , Escócia , País de Gales
7.
J Clean Prod ; 211: 1162-1170, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30799912

RESUMO

The increasing global demand for food and the environmental effects of reactive nitrogen losses in the food production chain, increase the need for efficient use of nitrogen (N). Of N harvested in agricultural plant products, 80% is used to feed livestock. Because the largest atmospheric loss of reactive nitrogen from livestock production systems is ammonia (NH3), the focus of this paper is on N lost as NH3 during the production of animal protein. The focus of this paper is to understand the key factors explaining differences in Nitrogen Use Efficiency (NUE) of animal production among various European countries. Therefore we developed a conceptual framework to describe the NUE defined as the amount of animal-protein N per N in feed and NH3-N losses in the production of milk, beef, pork, chicken meat and eggs in The Netherlands, Switzerland, United Kingdom, Germany, Austria and Denmark. The framework describes how manure management and animal-related parameters (feed, metabolism) relate to NH3 emissions and NUE. The results showed that the animal product with the lowest NUE had the largest NH3 emissions and vice versa, which agrees with the reciprocal relationship between NUE and NH3 within the conceptual framework. Across animal products for the countries considered, about 20% of the N in feed is lost as NH3. The significant smallest proportion (12%) of NH3-N per unit of Nfeed is from chicken production. The proportions for other products are 17%, 19%, 20% and 22% for milk, pork, eggs and beef respectively. These differences were not significantly different due to the differences among countries. For all countries, NUE was lowest for beef and highest for chicken. The production of 1 kg N in beef required about 5 kg N in feed, of which 1 kg N was lost as NH3-N. For the production of 1 kg N in chicken meat, 2 kg N in feed was required and 0.2 kg was lost as NH3. The production of 1 kg N in milk required 4 kg N in feed with 0.6 kg NH3-N loss, the same as pork and eggs, but those needed 3 and 3.5 kg N in feed per kg N in product respectively. Except for beef, the differences among these European countries were mainly caused by differences in manure management practices and their emission factors, rather than by animal-related factors including feed and digestibility influencing the excreted amount of ammoniacal N (TAN). For beef, both aspects caused important differences. Based on the results, we encourage the expression of N losses as per N in feed or per N in product, in addition to per animal place, when comparing production efficiency and NUE. We consider that disaggregating emission factors into a diet/animal effect and a manure management effect would improve the basis for comparing national NH3 emission inventories.

8.
Sci Total Environ ; 661: 696-710, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684838

RESUMO

Intensification of grasslands is necessary to meet the increasing demand of livestock products. The application of nitrogen (N) on grasslands affects the N balance therefore the nitrogen use efficiency (NUE). Emissions of nitrous oxide (N2O) are produced due to N fertilisation and low NUE. These emissions depend on the type and rates of N applied. In this study we have compiled data from 5 UK N fertilised grassland sites (Crichton, Drayton, North Wyke, Hillsborough and Pwllpeiran) covering a range of soil types and climates. The experiments evaluated the effect of increasing rates of inorganic N fertiliser provided as ammonium nitrate (AN) or calcium ammonium nitrate (CAN). The following fertiliser strategies were also explored for a rate of 320 kg N ha-1: using the nitrification inhibitor dicyandiamide (DCD), changing to urea as an N source and splitting fertiliser applications. We measured N2O emissions for a full year in each experiment, as well as soil mineral N, climate data, pasture yield and N offtake. N2O emissions were greater at Crichton and North Wyke whereas Drayton, Hillsborough and Pwllpeiran had the smallest emissions. The resulting average emission factor (EF) of 1.12% total N applied showed a range of values for all the sites between 0.6 and 2.08%. NUE depended on the site and for an application rate of 320 kg N ha-1, N surplus was on average higher than 80 kg N ha-1, which is proposed as a maximum by the EU Nitrogen Expert Panel. N2O emissions tended to be lower when urea was applied instead of AN or CAN, and were particularly reduced when using urea with DCD. Finally, correlations between the factors studied showed that total N input was related to Nofftake and Nexcess; while cumulative emissions and EF were related to yield scaled emissions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Agricultura/métodos , Inglaterra , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Irlanda do Norte , Escócia , País de Gales
9.
Animal ; : 1-11, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29650058

RESUMO

For livestock production systems to play a positive role in global food security, the balance between their benefits and disbenefits to society must be appropriately managed. Based on the evidence provided by field-scale randomised controlled trials around the world, this debate has traditionally centred on the concept of economic-environmental trade-offs, of which existence is theoretically assured when resource allocation is perfect on the farm. Recent research conducted on commercial farms indicates, however, that the economic-environmental nexus is not nearly as straightforward in the real world, with environmental performances of enterprises often positively correlated with their economic profitability. Using high-resolution primary data from the North Wyke Farm Platform, an intensively instrumented farm-scale ruminant research facility located in southwest United Kingdom, this paper proposes a novel, information-driven approach to carry out comprehensive assessments of economic-environmental trade-offs inherent within pasture-based cattle and sheep production systems. The results of a data-mining exercise suggest that a potentially systematic interaction exists between 'soil health', ecological surroundings and livestock grazing, whereby a higher level of soil organic carbon (SOC) stock is associated with a better animal performance and less nutrient losses into watercourses, and a higher stocking density with greater botanical diversity and elevated SOC. We contend that a combination of farming system-wide trials and environmental instrumentation provides an ideal setting for enrolling scientifically sound and biologically informative metrics for agricultural sustainability, through which agricultural producers could obtain guidance to manage soils, water, pasture and livestock in an economically and environmentally acceptable manner. Priority areas for future farm-scale research to ensure long-term sustainability are also discussed.

10.
Sci Total Environ ; 635: 607-617, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29679833

RESUMO

Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N2O), and represent a large proportion of total N2O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N2O emission factors (EFs) for excretal nitrogen (EF3, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N2O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N2O losses. This co-ordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N2O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N2O EF (EF3), of 0.49%, which is <25% of the IPCC default EF3 for excretal returns from grazing cattle. Regression analysis suggests that urine N2O EFs were controlled more by composition than was the case for dung, whilst dung N2O EFs were more related to soil and environmental factors. The urine N2O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N2O EF from urine patches by an average of 46%. The significantly lower excretal EF3 than the IPCC default has implications for the UK's national inventory and for subsequent carbon footprinting of UK ruminant livestock products.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Óxido Nitroso/análise , Urina/química , Agricultura , Poluição do Ar/estatística & dados numéricos , Animais , Bovinos , Inglaterra , Guanidinas , Gado , Solo
11.
Agric Ecosyst Environ ; 235: 229-241, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974862

RESUMO

Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.

12.
Eur J Soil Sci ; 67(4): 374-385, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27867310

RESUMO

The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro-environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21-ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep-rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land-based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail. HIGHLIGHTS: Can meat production systems be developed that are productive yet minimize losses to the environment?The data are from an intensively instrumented capability, which is globally unique and topical.We use sensing technologies and surveys to show the effect of pasture renewal on nutrient losses.Platforms provide evidence of the effect of meteorology, topography and farm activity on nutrient loss.

13.
Eur J Soil Sci ; 67(4): 397-408, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27867312

RESUMO

The North Wyke Farm Platform (NWFP) provides data from the field- to the farm-scale, enabling the research community to address key issues in sustainable agriculture better and to test models that are capable of simulating soil, plant and animal processes involved in the systems. The tested models can then be used to simulate how agro-ecosystems will respond to changes in the environment and management. In this study, we used baseline datasets generated from the NWFP to validate the Soil-Plant-Atmosphere Continuum System (SPACSYS) model in relation to the dynamics of soil water content, water loss from runoff and forage biomass removal. The validated model, together with future climate scenarios for the 2020s, 2050s and 2080s (from the International Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): medium (A1B) and large (A1F1) emission scenarios), were used to simulate the long-term responses of the system with three contrasting treatments on the NWFP. Simulation results demonstrated that the SPACSYS model could estimate reliably the dynamics of soil water content, water loss from runoff and drainage, and cut biomass for a permanent sward. The treatments responded in different ways under the climate change scenarios. More carbon (C) is fixed and respired by the swards treated with an increased use of legumes, whereas less C was lost through soil respiration with the planned reseeding. The deep-rooting grass in the reseeding treatment reduced N losses through leaching, runoff and gaseous emissions, and water loss from runoff compared with the other two treatments.

14.
J Environ Manage ; 166: 1-11, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468602

RESUMO

Concerns over the negative environmental impact from livestock farming across Europe continue to make their mark resulting in new legislation and large research programs. However, despite a huge amount of published material and many available techniques, doubts over the success of national and European initiatives remain. Uptake of the more cost-effective and environmentally-friendly farming methods (such as dietary control, building design and good manure management) is already widespread but unlikely to be enough in itself to ensure that current environmental targets are fully met. Some of the abatement options available for intensive pig and poultry farming are brought together under the European IPPC/IED directive where they are listed as Best Available Techniques (BAT). This list is far from complete and other methods including many treatment options are currently excluded. However, the efficacies of many of the current BAT-listed options are modest, difficult to regulate and in some cases they may even be counterproductive with respect to other objectives ie pollution swapping. Evaluation of the existing and new BAT technologies is a key to a successful abatement of pollution from the sector and this in turn relies heavily on good measurement strategies. Consideration of the global effect of proposed techniques in the context of the whole farm will be essential for the development of a valid strategy.


Assuntos
Criação de Animais Domésticos/métodos , Poluição Ambiental , Gado/crescimento & desenvolvimento , Criação de Animais Domésticos/legislação & jurisprudência , Criação de Animais Domésticos/tendências , Animais , Poluição Ambiental/análise , Poluição Ambiental/legislação & jurisprudência , Europa (Continente) , Regulamentação Governamental
15.
Chemosphere ; 119: 122-129, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24973531

RESUMO

Nitrous oxide (N2O) has become the prime ozone depleting atmospheric emission and the third most important anthropogenic greenhouse gas, with a global warming potential approximately 300 times higher than CO2. Nitrification and denitrification are processes responsible for N2O emission from the soil after nitrogen input. The application of a nitrification inhibitor can reduce N2O emissions from these processes. The objective of this study was to assess the effect of two different nitrification inhibitors (dicyandiamide (DCD) and a commercial formulation containing two pyrazole derivatives (PD), 1H-1,2,4-triazole and 3-methylpyrazole) on N2O emissions from cattle urine applications for summer grazing conditions in the UK. Experiments were conducted under controlled conditions in a laboratory incubator and under field conditions on a grassland soil. The N2O emissions showed similar temporal dynamics in both experiments. DCD concentration in the soil showed an exponential degradation during the experiment, with a half-life of the order of only 10d (air temperature c. 15 °C). DCD (10 kg ha(-1)) and PD at the highest application rate (3.76 kg ha(-1)) reduced N2O emissions by 13% and 29% in the incubation experiment and by 33% and 6% in the field experiment, respectively, although these reductions were not statistically significant (P>0.05). Under UK summer grazing conditions, these nitrification inhibitors appear to be less effective at reducing N2O emissions than reported for other conditions elsewhere in the literature, presumably due to the higher soil temperature.


Assuntos
Poluentes Atmosféricos/análise , Guanidinas/farmacologia , Óxido Nitroso/análise , Pirazóis/farmacologia , Poluentes do Solo/metabolismo , Triazóis/farmacologia , Poluentes Atmosféricos/metabolismo , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bovinos/urina , Inglaterra , Pradaria , Nitrificação/efeitos dos fármacos , Óxido Nitroso/metabolismo , Estações do Ano
16.
Sci Total Environ ; 409(19): 3993-4009, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21703662

RESUMO

Multiple demands are placed on farming systems today. Society, national legislation and market forces seek what could be seen as conflicting outcomes from our agricultural systems, e.g. food quality, affordable prices, a healthy environmental, consideration of animal welfare, biodiversity etc., Many of these demands, or desirable outcomes, are interrelated, so reaching one goal may often compromise another and, importantly, pose a risk to the economic viability of the farm. SIMS(DAIRY), a farm-scale model, was used to explore this complexity for dairy farm systems. SIMS(DAIRY) integrates existing approaches to simulate the effect of interactions between farm management, climate and soil characteristics on losses of nitrogen, phosphorus and carbon. The effects on farm profitability and attributes of biodiversity, milk quality, soil quality and animal welfare are also included. SIMS(DAIRY) can also be used to optimise fertiliser N. In this paper we discuss some limitations and strengths of using SIMS(DAIRY) compared to other modelling approaches and propose some potential improvements. Using the model we evaluated the sustainability of organic dairy systems compared with conventional dairy farms under non-optimised and optimised fertiliser N use. Model outputs showed for example, that organic dairy systems based on grass-clover swards and maize silage resulted in much smaller total GHG emissions per l of milk and slightly smaller losses of NO(3) leaching and NO(x) emissions per l of milk compared with the grassland/maize-based conventional systems. These differences were essentially because the conventional systems rely on indirect energy use for 'fixing' N compared with biological N fixation for the organic systems. SIMS(DAIRY) runs also showed some other potential benefits from the organic systems compared with conventional systems in terms of financial performance and soil quality and biodiversity scores. Optimisation of fertiliser N timings and rates showed a considerable scope to reduce the (GHG emissions per l milk too).


Assuntos
Indústria de Laticínios , Modelos Teóricos , Agricultura Orgânica/métodos , Pegada de Carbono , Fertilizantes , Nitrogênio , Solo/química , Reino Unido
17.
J Environ Qual ; 40(2): 383-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520745

RESUMO

Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end.


Assuntos
Agricultura/métodos , Amônia/metabolismo , Esterco , Nitratos/metabolismo , Silagem , Zea mays/metabolismo , Animais , Bovinos , Produtos Agrícolas , Nitrogênio/metabolismo , Solo , Zea mays/química
18.
Environ Pollut ; 154(3): 370-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18406024

RESUMO

Ammonia emissions (NH3) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH3 emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH3 emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH3 emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996.


Assuntos
Amônia/análise , Poluentes Ambientais/análise , Poluição Ambiental/estatística & dados numéricos , Modelos Teóricos , Agricultura , Poluentes Atmosféricos/análise , Criação de Animais Domésticos , Animais , Bovinos , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Feminino , Masculino , Esterco , Aves Domésticas , Suínos , Reino Unido
19.
J Dairy Sci ; 91(2): 857-69, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18218774

RESUMO

Federal and state regulations are being promulgated under the Clean Air Act to reduce hazardous air emissions from livestock operations. Although much is known about air emissions from livestock operations in Europe, few data are available on emissions from livestock facilities in the United States and the management practices that may minimize these emissions. The objective of this study was to measure seasonal and diet effects on ammonia emissions from experimental tie-stall dairy barns located in central Wisconsin. Four experimental chambers each housed 4 lactating Holstein dairy cows for three 28-d trial periods corresponding to spring, early fall, and winter. A 4 x 4 Latin square statistical design was used to evaluate 4 diets [corn silage (CS)- or alfalfa silage (AS)-based diets at low or high crude protein] in each chamber for a 4-d ammonia monitoring period. Partially due to higher crude protein levels, average ammonia-N emissions during spring (18.8 g/cow per d) were approximately twice the emissions recorded during early fall (8.4 g/cow per d) and 3 times greater than emissions during winter (6.7 g/cow per d). Ammonia-N emissions accounted for approximately 1 to 3% of consumed feed N, 2 to 5% of excreted manure N, and 4 to 11% of manure ammonical N. Nighttime ammonia emissions were on average 30% lower than daytime emissions. Forage type did not affect ammonia emissions during winter or early fall. Only during early spring were ammonia emissions lower from chambers containing cows fed low-CP diets than from cows fed high-CP diets. Of the total chamber N inputs (feed and bedding), 93, 91, and 95% were recovered in N outputs (milk, manure, body weight change, and ammonia N) during spring, early fall, and winter trials, respectively. Confidence in the accuracy of ammonia emission results was gained by the relatively high chamber N balances and favorable comparisons of study data with published relationships among the variables of feed N intake, milk urea N, manure N, and urine N excretion, and ammonia emissions.


Assuntos
Amônia/metabolismo , Bovinos/metabolismo , Medicago sativa , Silagem , Zea mays , Amônia/urina , Ração Animal , Animais , Bovinos/urina , Dieta , Feminino , Esterco/análise , Estações do Ano , Wisconsin
20.
J Environ Qual ; 37(1): 7-15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18178873

RESUMO

Federal and state regulations are being promulgated under the Clean Air Act to reduce hazardous air emissions from livestock operations. Few data are available on emissions from livestock facilities in the USA and the management practices that may minimize emissions. The objective of this study was to measure seasonal and bedding impacts on ammonia emissions from tie-stall dairy barns located in central Wisconsin. Four chambers each housed four Holstein dairy heifers (approximately 17 mo of age; body weights, 427-522 kg) for three 28-d trial periods corresponding to winter, summer, and fall. A 4x4 Latin Square statistical design was used to evaluate four bedding types (manure solids, chopped newspaper, pine shavings, and chopped wheat straw) in each chamber for a 4-d ammonia monitoring period. Average ammonia-N emissions (g heifer(-1) d(-1)) during summer (20.4) and fall (21.0) were similar and twice the emissions recorded during winter (10.1). Ammonia-N emissions accounted for approximately 4 to 7% of consumed feed N, 4 to 10% of excreted N, and 9 to 20% of manure ammonical N. Cooler nighttime temperatures did not result in lower ammonia emissions than daytime temperatures. Ammonia emissions (g heifer(-1) d(-1)) from chambers that contained manure solids (20.0), newspaper (18.9), and straw (18.9) were similar and significantly greater than emissions using pine shavings (15.2). Chamber N balances, or percent difference between the inputs feed N and bedding N, and the outputs manure N, body weight N, and ammonia N were 105, 90, and 89% for the winter, summer, and fall trials, respectively. Relatively high chamber N balances and favorable comparisons of study data with published values of ammonia emissions, feed N intake, and manure N excretion provided confidence in the accuracy of the study results.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Abrigo para Animais , Movimentos do Ar , Ração Animal/análise , Animais , Bovinos , Indústria de Laticínios , Monitoramento Ambiental , Feminino , Umidade , Nitrogênio/análise , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...