Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561022

RESUMO

Postmenopausal atherosclerosis (AS) has been attributed to estrogen deficiency. However, the beneficial effect of hormone replacement therapy (HRT) is lost in late postmenopausal women with atherogenesis. We asked whether aging-related iron accumulation affects estrogen receptor α (ERα) expression, thus explaining HRT inefficacy. A negative correlation has been observed between aging-related systemic iron deposition and ERα expression in postmenopausal AS patients. In an ovariectomized Apoe-/- mouse model, estradiol treatment had contrasting effects on ERα expression in early versus late postmenopausal mice. ERα expression was inhibited by iron treatment in cell culture and iron-overloaded mice. Combined treatment with estradiol and iron further decreased ERα expression, and the latter effect was mediated by iron-regulated E3 ligase Mdm2. In line with these observations, cellular cholesterol efflux was reduced, and endothelial homeostasis was disrupted. Consequently, AS was aggravated. Accordingly, systemic iron chelation attenuated estradiol-triggered progressive AS in late postmenopausal mice. Thus, iron and estradiol together downregulate ERα through Mdm2-mediated proteolysis, providing a potential explanation for failures of HRT in late postmenopausal subjects with aging-related iron accumulation. This study suggests that immediate HRT after menopause, along with appropriate iron chelation, might provide benefits from AS.


Assuntos
Aterosclerose , Receptor alfa de Estrogênio , Humanos , Feminino , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Pós-Menopausa , Terapia de Reposição de Estrogênios , Aterosclerose/metabolismo , Estradiol , Terapia de Reposição Hormonal , Quelantes de Ferro
2.
J Trace Elem Med Biol ; 78: 127182, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37130496

RESUMO

BACKGROUND: Despite the agreed principle that access to food is a human right, undernourishment and metal ion deficiencies are public health problems worldwide, exacerbated in impoverished or war-affected areas. It is known that maternal malnutrition causes growth retardation and affects behavioral and cognitive development of the newborn. Here we ask whether severe caloric restriction leads per se to disrupted metal accumulation in different organs of the Wistar rat. METHODS: Inductively coupled plasma optical emission spectroscopy was used to determine the concentration of multiple elements in the small and large intestine, heart, lung, liver, kidney, pancreas, spleen, brain, spinal cord, and three skeletal muscles from control and calorically restricted Wistar rats. The caloric restriction protocol was initiated from the mothers prior to mating and continued throughout gestation, lactation, and post-weaning up to sixty days of age. RESULTS: Both sexes were analyzed but dimorphism was rare. The pancreas was the most affected organ presenting a higher concentration of all the elements analyzed. Copper concentration decreased in the kidney and increased in the liver. Each skeletal muscle responded to the treatment differentially: Extensor Digitorum Longus accumulated calcium and manganese, gastrocnemius decreased copper and manganese, whereas soleus decreased iron concentrations. Differences were also observed in the concentration of elements between organs independently of treatment: The soleus muscle presents a higher concentration of Zn compared to the other muscles and the rest of the organs. Notably, the spinal cord showed large accumulations of calcium and half the concentration of zinc compared to brain. X-ray fluorescence imaging suggests that the extra calcium is attributable to the presence of ossifications whereas the latter finding is attributable to the low abundance of zinc synapses in the spinal cord. CONCLUSION: Severe caloric restriction did not lead to systemic metal deficiencies but caused instead specific metal responses in few organs.


Assuntos
Cobre , Manganês , Ratos , Animais , Masculino , Feminino , Humanos , Ratos Wistar , Cálcio , Zinco , Músculo Esquelético
3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203417

RESUMO

Malpighian tubules (MTs) are arthropod excretory organs crucial for the osmoregulation, detoxification and excretion of xenobiotics and metabolic wastes, which include tryptophan degradation products along the kynurenine (KYN) pathway. Specifically, the toxic intermediate 3-hydroxy kynurenine (3-HK) is metabolized through transamination to xanthurenic acid or in the synthesis of ommochrome pigments. Early investigations in Drosophila larval fat bodies revealed an intracellular autofluorescence (AF) that depended on tryptophan administration. Subsequent observations documented AF changes in the MTs of Drosophila eye-color mutants genetically affecting the conversion of tryptophan to KYN or 3-HK and the intracellular availability of zinc ions. In the present study, the AF properties of the MTs in the Asian tiger mosquito, Aedes albopictus, were characterized in different stages of the insect's life cycle, tryptophan-administered larvae and blood-fed adult females. Confocal imaging and microspectroscopy showed AF changes in the distribution of intracellular, brilliant granules and in the emission spectral shape and amplitude between the proximal and distal segments of MTs across the different samples. The findings suggest AF can serve as a promising marker for investigating the functional status of MTs in response to metabolic alterations, contributing to the use of MTs as a potential research model in biomedicine.


Assuntos
Aedes , Cinurenina , Triptofano , Feminino , Animais , Túbulos de Malpighi , Drosophila , Larva
4.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499537

RESUMO

Evidence from studies in the general population suggests an association between vitamin D insufficiency/deficiency and COVID-19 susceptibility and disease severity. The present study was performed on 165 third-trimester pregnant women at the time of delivery. Seventy-nine women tested negative for SARS-CoV-2. From 86 women testing positive, 32 were asymptomatic, 44 presented a mild form of the disease, and 10 experienced severe symptoms. Serum 25-OH vitamin D levels were measured on blood samples collected on admission. Low vitamin D levels were detected in symptomatic but not asymptomatic COVID-19 patients compared to healthy women (p = 0.0227). In addition, 20 (45.4%) pregnant women in the mild COVID-19 group and 6 (60%) in the severe group were vitamin D deficient (p = 0.030). On the other hand, lasso regression analysis showed that 25-OH vitamin D deficiency is an independent predictor of severe COVID-19 with an odds ratio (OR) of 5.81 (95% CI: 1.108-30.541; p = 0.037). These results show the relationship between vitamin D deficiency in pregnant women and the severity of COVID-19 infection and support the recommendation to supplement with vitamin D to avoid worse COVID-19 outcomes during pregnancy.


Assuntos
COVID-19 , Complicações na Gravidez , Deficiência de Vitamina D , Humanos , Feminino , Gravidez , COVID-19/complicações , SARS-CoV-2 , Vitamina D
5.
Metallomics ; 14(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36151967

RESUMO

Contrasting reports exist in the literature regarding the effect of chloroquine treatment on cellular zinc uptake or secretion. Here, we tested the effect of chloroquine administration in the Drosophila model organism. We show that larvae grown on a diet supplemented with 2.5 mg/ml chloroquine lose up to 50% of their stored zinc and around 10% of their total potassium content. This defect in chloroquine-treated animals correlates with the appearance of abnormal autophagolysosomes in the principal cells of the Malpighian tubules, where zinc storage granules reside. We further show that the reported increase of Fluozin-3 fluorescence following treatment of cells with 300 µM chloroquine for 1 h may not reflect increased zinc accumulation, since a similar treatment in Madin-Darby canine kidney cells results in a 36% decrease in their total zinc content. Thus, chloroquine should not be considered a zinc ionophore. Zinc supplementation plus chloroquine treatment restored zinc content both in vivo and in vitro, without correcting autophagic or other ionic alterations, notably in potassium, associated with the chloroquine treatment. We suggest that chloroquine or hydroxychloroquine administration to patients could reduce intracellular zinc storage pools and be part of the drug's mechanism of action.


Assuntos
Drosophila melanogaster , Túbulos de Malpighi , Animais , Cloroquina/farmacologia , Cães , Hidroxicloroquina/farmacologia , Ionóforos/farmacologia , Potássio , Zinco/farmacologia
6.
Curr Opin Insect Sci ; 54: 100965, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36067958

RESUMO

The 2022 Molecular Physiology volume of Current Opinion in Insect Science offers an overview of transition-metal ion (iron, copper, manganese, and zinc) biology and nonessential heavy metal ion (cadmium, lead, and methylmercury) toxicology in the model organism Drosophila melanogaster and in other insect species. An article on ticks serves as an informative evolutionary comparator for iron and heme physiology. The complex interface between environmental exposure to metals, symbiotic or pathogenic microbes, and insect behavior and reproduction is considered.


Assuntos
Drosophila melanogaster , Metais Pesados , Animais , Íons , Ferro , Insetos
7.
Front Cell Dev Biol ; 10: 935363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016660

RESUMO

Pregnancy makes women more susceptible to infectious agents; however, available data on the effect of SARS-CoV-2 on pregnant women are limited. To date, inflammatory responses and changes in serum metal concentration have been reported in COVID-19 patients, but few associations between metal ions and cytokines have been described. The aim of this study was to evaluate correlations between inflammatory markers and serum metal ions in third-trimester pregnant women with varying COVID-19 disease severity. Patients with severe symptoms had increased concentrations of serum magnesium, copper, and calcium ions and decreased concentrations of iron, zinc, and sodium ions. Potassium ions were unaffected. Pro-inflammatory cytokines IL-6, TNF-α, IL-8, IL-1α, anti-inflammatory cytokine IL-4, and the IP-10 chemokine were induced in the severe presentation of COVID-19 during pregnancy. Robust negative correlations between iron/magnesium and zinc/IL-6, and a positive correlation between copper/IP-10 were observed in pregnant women with the severe form of the disease. Thus, coordinated alterations of serum metal ions and inflammatory markers - suggestive of underlying pathophysiological interactions-occur during SARS-CoV-2 infection in pregnancy.

9.
Proc Natl Acad Sci U S A ; 119(16): e2117807119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412912

RESUMO

Zinc deficiency is commonly attributed to inadequate absorption of the metal. Instead, we show that body zinc stores in Drosophila melanogaster depend on tryptophan consumption. Hence, a dietary amino acid regulates zinc status of the whole insect­a finding consistent with the widespread requirement of zinc as a protein cofactor. Specifically, the tryptophan metabolite kynurenine is released from insect fat bodies and induces the formation of zinc storage granules in Malpighian tubules, where 3-hydroxykynurenine and xanthurenic acid act as endogenous zinc chelators. Kynurenine functions as a peripheral zinc-regulating hormone and is converted into a 3-hydroxykynurenine­zinc­chloride complex, precipitating within the storage granules. Thus, zinc and the kynurenine pathway­well-known modulators of immunity, blood pressure, aging, and neurodegeneration­are physiologically connected.


Assuntos
Drosophila melanogaster , Cinurenina , Triptofano , Zinco , Animais , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Cinurenina/metabolismo , Túbulos de Malpighi/metabolismo , Triptofano/metabolismo , Zinco/metabolismo
10.
PLoS Negl Trop Dis ; 15(6): e0009509, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161336

RESUMO

Iron and copper chelation restricts Plasmodium growth in vitro and in mammalian hosts. The parasite alters metal homeostasis in red blood cells to its favor, for example metabolizing hemoglobin to hemozoin. Metal interactions with the mosquito have not, however, been studied. Here, we describe the metallomes of Anopheles albimanus and Aedes aegypti throughout their life cycle and following a blood meal. Consistent with previous reports, we found evidence of maternal iron deposition in embryos of Ae. aegypti, but less so in An. albimanus. Sodium, potassium, iron, and copper are present at higher concentrations during larval developmental stages. Two An. albimanus phenotypes that differ in their susceptibility to Plasmodium berghei infection were studied. The susceptible white stripe (ws) phenotype was named after a dorsal white stripe apparent during larval stages 3, 4, and pupae. During larval stage 3, ws larvae accumulate more iron and copper than the resistant brown stripe (bs) phenotype counterparts. A similar increase in copper and iron accumulation was also observed in the susceptible ws, but not in the resistant bs phenotype following P. berghei infection. Feeding ws mosquitoes with extracellular iron and copper chelators before and after receiving Plasmodium-infected blood protected from infection and simultaneously affected follicular development in the case of iron chelation. Unexpectedly, the application of the iron chelator to the bs strain reverted resistance to infection. Besides a drop in iron, iron-chelated bs mosquitoes experienced a concomitant loss of copper. Thus, the effect of metal chelation on P. berghei infectivity was strain-specific.


Assuntos
Anopheles/metabolismo , Anopheles/parasitologia , Cobre/metabolismo , Ferro/metabolismo , Animais , Anopheles/crescimento & desenvolvimento , Sangue/metabolismo , Quelantes/farmacologia , Feminino , Interações Hospedeiro-Parasita , Malária/fisiopatologia , Masculino , Fenantrolinas/farmacologia , Plasmodium berghei/fisiologia
11.
Curr Opin Insect Sci ; 47: 18-24, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33581350

RESUMO

A conceptual framework is offered for critically approaching the formidable ability of insects to segregate metal ions to their multiple destinations in proteins and subcellular compartments. New research in Drosophila melanogaster suggests that nuclear iron regulatory proteins and oxidative stress transcription factors mediate metal-responsive gene expression. Identification of a zinc-regulated chaperone in the endoplasmic reticulum potentially explains membrane protein trafficking defects observed in zinc transporter mutants. Compartmentalized zinc is utilized in fertilization, embryogenesis and for the activation of zinc-finger transcription factors - the latter function demonstrated during muscle development, while dietary zinc is sensed through gating of a chloride channel. Another emerging theme in cellular metal homeostasis is that transporters and related proteins meet at endoplasmic reticulum-mitochondria associated membranes with physiologically relevant consequences during aging.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Íons , Fatores de Transcrição/genética , Zinco
12.
Life Sci ; 268: 119003, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417957

RESUMO

AIMS: This study attempts to elicit whether the level of hyperglycemia in an early stage of diabetic nephropathy changes the renal expression of claudins-2 and -5 and to determine the involvement of glucose-induced oxidative stress. MAIN METHODS: Streptozotocin-induced type-1 and type-2 diabetic (DM1, DM2)-rat models were used. At 14-week old, the rats were placed in metabolic cages to evaluate proteinuria, creatinine clearance, and electrolyte excretion. Proximal tubules and glomeruli were isolated and analyzed by Western blot and immunofluorescence. Renal oxidative stress and metalloproteinase activities were evaluated. KEY FINDINGS: We found that claudin-5 expression in glomeruli and claudin-2 expression in proximal tubules were significantly reduced in DM1 versus DM2 model, paralleling with higher proteinuria and loss of sodium and potassium reabsorption, increased malondialdehyde levels, but lower antioxidant capacity in both models. Enzymatic activity of MMP-2 and-9 was increased in both diabetic groups versus control being higher in DM1 than DM2, suggesting higher claudin's degradation. SIGNIFICANCE: The level of hyperglycemia determines the time-dependent progression to diabetic nephropathy; hyperglycemia-induced oxidative stress parallels an increase in metalloproteinases (MMPs) activities consequently affecting the integrity of claudin-2 and -5 in glomerulus and proximal tubule. Our results suggest that chronic high-glycemia levels in early stages of diabetic nephropathy decrease expression of claudins-2 and -5, increase oxidative stress, and induce MMP-activity faster than chronic middle-glycemia levels.


Assuntos
Claudina-2/metabolismo , Claudina-5/metabolismo , Nefropatias Diabéticas/metabolismo , Hiperglicemia/metabolismo , Rim/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/patologia , Rim/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Estresse Oxidativo , Ratos Wistar , Transportador 2 de Glucose-Sódio/metabolismo , Estreptozocina
13.
Biometals ; 33(6): 293-303, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33026606

RESUMO

Insect epidermal cells secrete a cuticle that serves as an exoskeleton providing mechanical rigidity to each individual, but also insulation, camouflage or communication within their environment. Cuticle deposition and hardening (sclerotization) and pigment synthesis are parallel processes requiring tyrosinase activity, which depends on an unidentified copper-dependent enzyme component in Drosophila melanogaster. We determined the metallomes of fly strains selected for lighter or darker cuticles in a laboratory evolution experiment, asking whether any specific element changed in abundance in concert with pigment deposition. The results showed a correlation between total iron content and strength of pigmentation, which was further corroborated by ferritin iron quantification. To ask if the observed increase in iron body content along with increased pigment deposition could be generalizable, we crossed yellow and ebony alleles causing light and dark pigmentation, respectively, into similar genetic backgrounds and measured their metallomes. Iron remained unaffected in the various mutants providing no support for a causative link between pigmentation and iron content. In contrast, the combined analysis of both experiments suggested instead a correlation between pigment deposition and total copper body content, possibly due to increased demand for epidermal tyrosinase activity.


Assuntos
Cobre/análise , Drosophila melanogaster/química , Animais , Cobre/metabolismo , Drosophila melanogaster/metabolismo , Melaninas/análise , Melaninas/metabolismo , Pigmentação
14.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118705, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32199885

RESUMO

The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.


Assuntos
Proteína 1 Reguladora do Ferro/genética , Proteínas Reguladoras de Ferro/genética , Proteínas Ferro-Enxofre/genética , Ferro/metabolismo , Aconitato Hidratase/genética , Núcleo Celular/genética , Ceruloplasmina/genética , Citosol/metabolismo , Ferritinas/genética , Regulação da Expressão Gênica/genética , Proteínas Ferro-Enxofre/química , Oxirredução , RNA Mensageiro/genética
15.
Neuroscience ; 439: 275-286, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954828

RESUMO

The use of antibodies to identify neuronal receptors, neurotransmitters, cytoskeletal elements or pathologic protein aggregates, ion channels, adhesion molecules or other cell-type specific markers, is common practice in neuroscience. Antibody detection systems are often based on confocal, epifluorescence or brightfield microscopy. Three types of technical issues can interfere with immunolabeling: low abundance of the target protein, low specific affinity of the antibody and/or signal background sometimes related to tissue fixation. Here, giving tribute to Professor Miledi's mentorship, we propose the application of an antibody signal enhancer (ASE) solution based on glycine, hydrogen peroxide and a detergent mix as a simple, low cost, protocol variation that significantly and specifically improves the signal to noise ratio during immunostaining experiments. We describe three new settings in which ASE improves the detection of a variety of antibodies applied on long-time stored non-human primate brain sections, cell culture monolayers and on squamous carcinomas retrieved from cervical cancer patients. The significant improvement of ASE over optimized immunohistochemical protocols used in clinical practice (i.e. cancer detection) combined with its simplicity and low cost makes it an attractive method for biomedical applications.


Assuntos
Encéfalo , Neoplasias , Animais , Biópsia , Técnicas de Cultura de Células , Humanos , Imuno-Histoquímica , Primatas
17.
Metallomics ; 12(2): 218-240, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31799578

RESUMO

Manganese is considered essential for animal growth. Manganese ions serve as cofactors to three mitochondrial enzymes: superoxide dismutase (Sod2), arginase and glutamine synthase, and to glycosyltransferases residing in the Golgi. In Drosophila melanogaster, manganese has also been implicated in the formation of ceramide phosphoethanolamine, the insect's sphingomyelin analogue, a structural component of cellular membranes. Manganese overload leads to neurodegeneration and toxicity in both humans and Drosophila. Here, we report specific absorption and accumulation of manganese during the first week of adulthood in flies, which correlates with an increase in Sod2 activity during the same period. To test the requirement of dietary manganese for this accumulation, we generated a Drosophila model of manganese deficiency. Due to the lack of manganese-specific chelators, we used chemically defined media to grow the flies and deplete them of the metal. Dietary manganese depletion reduced Sod2 activity. We then examined gene and protein expression changes in the intestines of manganese depleted flies. We found adaptive responses to the presumed loss of known manganese-dependent enzymatic activities: less glutamine synthase activity (amination of glutamate to glutamine) was compensated by 50% reduction in glutaminase (deamination of glutamine to glutamate); less glycosyltransferase activity, predicted to reduce protein glycosylation, was compensated by 30% reduction in lysosomal mannosidases (protein deglycosylating enzymes); less ceramide phosphoethanolamine synthase activity was compensated by 30% reduction in the Drosophila sphingomyeline phospodiesterase, which could catabolize ceramide phosphoethanolamine in flies. Reduced Sod2 activity, predicted to cause superoxide-dependent iron-sulphur cluster damage, resulted in cellular iron misregulation.


Assuntos
Drosophila melanogaster/fisiologia , Intestinos/fisiologia , Manganês/deficiência , Animais , Dieta , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Íons/metabolismo , Manganês/análise , RNA-Seq , Superóxido Dismutase/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
18.
Front Neurosci ; 13: 700, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354411

RESUMO

The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.

19.
Front Physiol ; 9: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491838

RESUMO

Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.

20.
J Exp Biol ; 221(Pt 6)2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29367274

RESUMO

Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers.


Assuntos
Drosophila melanogaster/metabolismo , Lisossomos/metabolismo , Zinco/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Feminino , Túbulos de Malpighi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...