Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 135(17): 2143-2163, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34486670

RESUMO

Increased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias. Excessive ischemic arrhythmias in SHR-CRP led to a significant reduction in infarct size (IS) compared with SHR. The proarrhythmic phenotype in SHR-CRP was associated with altered heart and plasma eicosanoids, myocardial composition of fatty acids (FAs) in phospholipids, and autonomic nervous system imbalance before ischemia. To explain unexpected IS-limiting effect in SHR-CRP, we performed metabolomic analysis of plasma before and after ischemia. We also determined cardiac ischemic tolerance in hearts subjected to remote ischemic perconditioning (RIPer) and in hearts ex vivo. Acute ischemia in SHR-CRP markedly increased plasma levels of multiple potent cardioprotective molecules that could reduce IS at reperfusion. RIPer provided IS-limiting effect in SHR that was comparable with myocardial infarction observed in naïve SHR-CRP. In hearts ex vivo, IS did not differ between the strains, suggesting that extra-cardiac factors play a crucial role in protection. Our study shows that transgenic expression of human CRP predisposes SHR-CRP to excess ischemic ventricular tachyarrhythmias associated with a drop of pump function that triggers myocardial salvage against lethal I/R injury likely mediated by protective substances released to blood from hypoxic organs and tissue at reperfusion.


Assuntos
Hipertensão/complicações , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Taquicardia Ventricular/etiologia , Fibrilação Ventricular/etiologia , Potenciais de Ação , Animais , Pressão Sanguínea , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Modelos Animais de Doenças , Frequência Cardíaca , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Endogâmicos SHR , Ratos Transgênicos , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
2.
Bioorg Chem ; 98: 103717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171994

RESUMO

A series of 2-aryl-2-(pyridin-2-yl)acetamides were synthesized and screened for their anticonvulsant activity in animal models of epilepsy. The compounds were broadly active in the 'classical' maximal electroshock seizure (MES) and subcutaneous Metrazol (scMET) tests as well as in the 6 Hz and kindling models of pharmacoresistant seizures. Furthermore, the compounds showed good therapeutic indices between anticonvulsant activity and motor impairment. Structure-activity relationship (SAR) trends clearly showed the highest activity resides in unsubstituted phenyl derivatives or compounds having ortho- and meta- substituents on the phenyl ring. The 2-aryl-2-(pyridin-2-yl)acetamides were derived by redesign of the cardiotoxic sodium channel blocker Disopyramide (DISO). Our results show that the compounds preserve the capability of the parent compound to inhibit voltage gated sodium currents in patch-clamp experiments; however, in contrast to DISO, a representative compound from the series 1 displays high levels of cardiac safety in a panel of in vitro and in vivo experiments.


Assuntos
Acetamidas/uso terapêutico , Anticonvulsivantes/uso terapêutico , Disopiramida/uso terapêutico , Convulsões/tratamento farmacológico , Acetamidas/administração & dosagem , Acetamidas/química , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/química , Disopiramida/administração & dosagem , Disopiramida/química , Relação Dose-Resposta a Droga , Eletrochoque , Feminino , Injeções Intraperitoneais , Injeções Subcutâneas , Masculino , Camundongos , Estrutura Molecular , Pentilenotetrazol/administração & dosagem , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Relação Estrutura-Atividade
3.
Front Physiol ; 9: 918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057556

RESUMO

Substance P (SP) is a neuropeptide engaged in the signal transmission of neural C fibers afferents in the myocardium. The actions of SP in the heart are extensive and they are mediated by the neurokinin 1 receptor (NK1R), a member of the tachykinin subfamily of G-protein coupled receptors. The receptors have been found in the heart, but to our knowledge, their exact localization in the heart has not been described yet. Here, we investigated the presence of NK1R protein in separate rat heart compartments by means of western blot and its tissue distribution by means of immunofluorescence. Specificity of NK1R immunolabeling was controlled by preabsorption of the antiserum with its corresponding peptide. Additionally, we investigated abundance of gene for NK1R in separated heart chambers by means of quantitative real-time PCR (RT-PCR). Relative abundance of NK1R mRNA was expressed as a ratio of target gene Cq value to Cq value of control gene - beta-actin. Finally, we studied abundance of NK1R mRNA in different cell types of heart isolated by laser capture microdissection. Immunofluorescence showed NK1R immunoreactivity on the surface of some intracardiac neurons and smooth muscle cells of coronary vessels. The results of quantitative RT-PCR indicate abundance of mRNA for NK1R in all heart chambers with highest level in the left atrium. The presence of NK1R mRNA was detected in some samples of dissected intracardiac neurons, but not in cardiomyocytes or smooth muscle cells of coronary vessels. In the course of long-term diabetes, a significant downregulation of the NK1R mRNA was seen in the right atrium and upregulation in the right ventricle 53 weeks after the induction of diabetes. Our results indicate localization of NK1R in some intracardiac neurons and smooth muscle cells. Impaired transcription of the NK1R gene in the diabetic heart may be induced by unidentified genes or factors involved in the development of diabetic cardiomyopathy.

4.
Can J Physiol Pharmacol ; 95(11): 1351-1359, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28746816

RESUMO

Liver cirrhosis is associated with impairment of cardiovascular function including alterations of the heart innervation, humoral and nervous dysregulation, changes in systemic circulation and electrophysiological abnormalities. Choline acetyltransferase (ChAT), enzyme forming acetylcholine, tyrosine hydroxylase (TH), and dopamine-ß-hydroxylase (DBH), enzymes participating in noradrenaline synthesis, are responsible for the production of classical neurotransmitters, and atrial natriuretic peptide (ANP) is produced by cardiomyocytes. The aim of this study was to evaluate the influence of experimentally induced hepatic dysfunction on the expression of proANP, ChAT, TH, and DBH in the heart. Hepatic dysfunction was induced by application of thioacetamide (TAA) or by ligation of bile duct. Biochemical parameters of hepatic injury and levels of peroxidation in the liver and heart were measured. Liver enzymes measured in the plasma were significantly elevated. Cardiac level of peroxidation was increased in operated but not TAA group animals. In the left atrium of operated rats, the expression of TH and DBH was lower, while expression of ChAT remained unchanged. In TAA group, no significant differences in the expression of the genes compared to controls were observed. Liver injury induced by ligation leads to an imbalance in the intracardiac innervation, which might impair nervous control of the heart.


Assuntos
Regulação da Expressão Gênica , Fígado/fisiopatologia , Miocárdio/metabolismo , Potenciais de Ação , Animais , Fator Natriurético Atrial/sangue , Fator Natriurético Atrial/metabolismo , Dopamina beta-Hidroxilase/sangue , Dopamina beta-Hidroxilase/metabolismo , Coração/fisiologia , Peroxidação de Lipídeos , Fígado/enzimologia , Cirrose Hepática/enzimologia , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Masculino , Contração Muscular , Miocárdio/enzimologia , Estresse Oxidativo , Ratos , Tirosina 3-Mono-Oxigenase/sangue , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Am J Transl Res ; 8(7): 3148-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27508036

RESUMO

Atrial natriuretic peptide (ANP) is produced and released by mammalian cardiomyocytes and induces natriuresis, diuresis, and lowering of blood pressure. The present study examined localization of ANP and a possible role of the hypothalamic-pituitary-adrenal axis (HPA) activity on the expression of proANP gene in the heart. The Sprague Dawley (SD) and Lewis (LE) rat strains were used. The animals were exposed to the two types of stress: immobilization and immobilization combined with water immersion for 1 hour. Localization of ANP was detected by immunohistochemistry and expression of the proANP mRNA by real-time qPCR in all heart compartments of control and stressed animals after 1 and 3 hours after stress termination (IS1, IS3, ICS1, and ICS3). Relatively high density of ANP-immunoreactivity was observed in both atria of both rat strains. In control rats of both strains, the expression of the proANP mRNA was higher in the atria than in ventricles. In SD rats with the intact HPA axis, an upregulation of ANP gene expression was observed in the right atrium after IS1, in both atria and the left ventricle after IS3 and in the left atrium and the left ventricle after ICS3. In LE rats with a blunted reactivity of the HPA axis, no increase or even a downregulation of the gene expression was observed. Thus, acute stress-induced increase in the expression of the proANP gene is related to the activity of the HPA axis. It may have relevance to ANP-induced protection of the heart.

6.
Neuropeptides ; 58: 41-51, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26706184

RESUMO

This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Receptores da Neurocinina-1/fisiologia , Substância P/fisiologia , Animais , Encéfalo/fisiologia , Isquemia Encefálica/fisiopatologia , Cardiopatias/fisiopatologia , Humanos , Isquemia Miocárdica/fisiopatologia , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Transdução de Sinais , Substância P/biossíntese , Substância P/metabolismo
7.
Gen Physiol Biophys ; 33(2): 215-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24177018

RESUMO

Both adrenomedullin and calcitonin gene-related peptide (CGRP) regulate vascular tone in the heart, being cardioprotective in hypoxia. Additionally, adrenomedullin exhibits antiproliferative and antiapoptotic functions in the myocardium, while CGRP exerts positive chronotropic effect. Their actions are mediated through the specific G protein-coupled receptor, CRLR, whose ligand affinity is determined by receptor activity modifying proteins RAMP1-3. CGRP binds to the complex formed by CRLR/RAMP1, whereas CRLR/RAMP2 and CRLR/RAMP3 serve as receptors for adrenomedullin. Here, we quantified expression of this signaling system in the rat heart and supplying sensory ganglia (dorsal root ganglia T1-T4 and vagal nodose ganglia) in streptozotocin-induced diabetes. In the course of diabetes, an increase of CRLR mRNA was noticed in the right ventricle 8 weeks and of RAMP3 mRNA in the left ventricle and right atrium 26 weeks after induction of diabetes. Relative expressions of other tested genes were not significantly altered. In the nodose vagal supplying specific cardiac afferents, but not in dorsal root ganglia which provide cardiac pain fibres, a small upregulation of CGRP expression was detected. In summary, the shifts observed in diabetes may favour a trend of a pronounced adrenomedullin signaling. These observations may provide a new possible therapeutic strategy for diabetic cardiomyopathy.


Assuntos
Adrenomedulina/genética , Proteína Semelhante a Receptor de Calcitonina/genética , Diabetes Mellitus Experimental/genética , Gânglios Sensitivos/metabolismo , Regulação da Expressão Gênica , Miocárdio/metabolismo , Adrenomedulina/metabolismo , Animais , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Diabetes Mellitus Experimental/patologia , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
8.
Neuro Endocrinol Lett ; 33(2): 124-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22592192

RESUMO

OBJECTIVES: Cardiovascular system is regulated by a diverse array of hormones, neurotransmitters and neuropeptides. Oxytocin and its receptors (OTR) were also shown to regulate cardiovascular functions and this hormone was even called cardiovascular hormone. In recent publication, we demonstrated the expression of mRNA of OTR by real-time quantitative PCR (RT qPCR) in all rat heart compartments. The aim of this study was to investigate the effects of acute restraint stress on OTR mRNA expression in two rat strains with different activity of HPA axis. METHODS: Adult male Sprague-Dawley and Lewis rats, the latter strain reported to have lower HPA activity, were used in RT qPCR studies and Wistar rats in immunofluorescent ones. Both acute restraint (IS) and this stress combined with the immersion of rats in water (ICS) lasted 60 min. Gene expression of OTR mRNA was estimated in all heart compartments after 1 or 3 hours after stress termination (IS1, IS3, ICS1, ICS3). The relative expression was calculated using 2(-ΔΔC)T method. In immunofluorescent studies we used commercial specific OTR antibodies. RESULTS: In RT qPCR studies we found higher expression of OTR mRNA in atria than in ventricles and no statistical differences between Sprague-Dawley and Lewis rats under basal conditions. Relative expression of OTR mRNA after 60 min lasting stress exposure differed in dependence on the stress type and partly on the time interval after the stress termination. When compared to controls, in rat left atria both stressors caused inhibition of OTR mRNA expression in both rat strains. In rat ventricles, which have very low OTR mRNA expression, there was a significant difference in the effect of two stressors. In most groups ICS displayed the increase of OTR mRNA expression if compared to IS groups. Immunofluorescent studies revealed changes induced by acute restraint stress in all heart compartments. The immunofluorescent studies suggested that acute stress induces higher colocalization of OTR with the nuclei than it was observed in the controls. CONCLUSIONS: The expression of OTR mRNA in all heart compartments of controls as well as after stress exposure in Sprague-Dawley and Lewis rats support the notion that OTR plays a regulatory role in the cardiovascular system and is also involved in the regulations in the heart after stress. The immunofluorescent observation that OTRs coexpress in areas of cell nuclei in certain heart compartments and after acute stress, compared to controls, requires further studies.


Assuntos
Expressão Gênica/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Miocárdio/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Receptores de Ocitocina/biossíntese , Estresse Fisiológico/fisiologia , Animais , Masculino , Miocárdio/citologia , Transporte Proteico , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Ocitocina/metabolismo , Restrição Física/métodos , Especificidade da Espécie
9.
Neuro Endocrinol Lett ; 32(6): 805-10, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22286791

RESUMO

OBJECTIVES: Oxytocin (OT) is a neuropeptide acting both as a peripheral hormone and in the brain as neurotransmitter and neuromodulator. In addition to its well-known effects on milk-ejection and uterine contraction, OT was shown to exert neuroendocrine regulation of heart functions. The aim of this study was to investigate the expression of mRNA of OT receptors (OTR) in rat hearts by real-time quantitative PCR (qPCR). The study was performed in Sprague-Dawley (SD) and Lewis (LE) rat strains, the latter having lower activity of HPA axis. METHODS: We used adult male SD and LE rats. OTR mRNA expression was detected in all heart chambers by comparing their threshold cycle values (CT) to CT of reference gene ß-actin. The relative expression ratios were calculated using the 2-ΔΔCT method. The specificity of reaction of primary antibody with OTRs was tested by Western Blot and localization of OTR in the heart compartments was performed by immunofluorescence with commercial OTR specific antibodies. RESULTS: We found expression of OTR mRNA in all heart compartments. The expression of OTR mRNA in both atria (LA, RA) was much higher than in the ventricles (RV, LV). By using two-way ANOVA we found no statistical differences between corresponding compartments of SD and LE rats. Immunohistochemical studies showed that OTR staining is not related to neuronal tissue and findings from left atrium indicate that prevalent localization of OTR is on cell membranes of cardiomyocytes. CONCLUSIONS: The finding of expression of OTR mRNA by real-time qPCR and proof of OTR staining by immunohistochemistry in all heart compartments indicate that OT and its receptors may have function as a cardiovascular hormone. The differences in the HPA axis activity, as is exemplified in Sprague-Dawley and Lewis rat strain, do not project in the expression of OTR mRNA under basal condition. The effect of activity of HPA on OTR expression should be studied under stimulated conditions as it was performed in the behavioral studies.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Miocárdio/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , RNA Mensageiro/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Animais , Masculino , Miocárdio/citologia , Ocitocina/metabolismo , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...