Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275711

RESUMO

The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transmissão Sináptica/fisiologia , Animais , Sinais (Psicologia) , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina/metabolismo , Transmissão Sináptica/genética
2.
PLoS One ; 8(4): e62509, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658634

RESUMO

miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNß induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity.


Assuntos
Hipocampo/metabolismo , MicroRNAs/genética , Neocórtex/metabolismo , Plasticidade Neuronal/genética , Receptores de AMPA/genética , Transmissão Sináptica/genética , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Fibroblastos/imunologia , Fibroblastos/virologia , Hipocampo/citologia , Interferon beta/biossíntese , Interferon beta/imunologia , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Neocórtex/citologia , Neurônios/citologia , Neurônios/metabolismo , Cultura Primária de Células , Receptores de AMPA/metabolismo , Vírus Sendai/fisiologia , Sinapses/genética , Sinapses/metabolismo
3.
Hippocampus ; 21(11): 1157-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20635414

RESUMO

Hippocampal granule cells transmit information about behaviorally-relevant stimuli to CA3 pyramidal cells via mossy fiber synapses. These synapses express a form of long-term potentiation (mfLTP) that is non-Hebbian and does not require NMDA receptors. mfLTP is thought to be induced and expressed presynaptically, hence, the major determinant of whether mfLTP occurs is activity in the granule cells. However, it remains unclear whether mfLTP can be induced by activity patterns that granule cells exhibit in vivo, and-if so-what context generates these patterns. To address these issues, we examined granule cell activity from in vivo recordings from rats during performance of a delayed nonmatch-to-sample (DNMS) task and found that granule cells exhibit a wide range of spike patterns. In vitro slice experiments in mice demonstrated that some, but not all, of these patterns of activity could induce mfLTP. By further defining the activity thresholds for mfLTP in hippocampal slices, we found that mfLTP can only be induced by spike patterns that fire in high frequency bursts with a low average firing frequency. Using this information, we then screened for suprathreshold bursts of activity during the DNMS task. In a subset of cells, suprathreshold bursts occurred preferentially during the sampling phase of the task. If suprathreshold bursting took place later, during the delay phase, task performance was disrupted. We conclude that mfLTP can be induced by granule cell spike patterns during a memory task, and that the timing of mfLTP induction can predict task performance.


Assuntos
Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Sinapses/fisiologia , Animais , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos
4.
Eur J Neurosci ; 27(10): 2643-56, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18547248

RESUMO

Transmission through the thalamus activates circuits involving the GABAergic neurons of the thalamic reticular nucleus (TRN). TRN cells receive excitatory inputs from thalamocortical and corticothalamic cells and send inhibitory projections to thalamocortical cells. The inhibitory output of TRN neurons largely depends on the level of excitatory drive to these cells but may also be partly under the control of mechanisms intrinsic to the TRN. We examined two such possible mechanisms, short-term plasticity at glutamatergic synapses in the TRN and intra-TRN inhibition. In rat brain slices, responses of TRN neurons to brief trains of stimuli applied to glutamatergic inputs were recorded in voltage- or current-clamp mode. In voltage clamp, TRN cells showed no change in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory postsynaptic current amplitudes to stimulation at non-gamma frequencies (< 30 Hz), simulating background activity, but exhibited short-term depression in these amplitudes to stimulation at gamma frequencies (> 30 Hz), simulating sensory transmission. In current clamp, TRN cells increased their spike outputs in burst and tonic firing modes to increasing stimulus-train frequencies. These increases in spike output were most likely due to temporal summation of excitatory postsynaptic potentials. However, the frequency-dependent increase in tonic firing was attenuated at gamma stimulus frequencies, indicating that the synaptic depression selectively observed in this frequency range acts to suppress TRN cell output. In contrast, intra-TRN inhibition reduced spike output selectively at non-gamma stimulus frequencies. Thus, our data indicate that two intrinsic mechanisms play a role in controlling the tonic spike output of TRN neurons and these mechanisms are differentially related to two physiologically meaningful stimulus frequency ranges.


Assuntos
Potenciais de Ação/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Núcleos Intralaminares do Tálamo/citologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia
6.
Neuropharmacology ; 54(2): 290-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17998139

RESUMO

Granule cells of the dentate gyrus in the hippocampus generally fire at low frequencies but are known to respond to sensory cues by increasing their rate of firing. We have previously shown that a burst of action potentials in synaptically isolated granule cells can induce a long-term depolarisation (LTDepol) of the neuronal membrane potential. This form of excitability plasticity could be an important mechanism for learning and memory. Here we demonstrate that this depolarisation can be reversed by physiologically relevant firing patterns. At a basal action potential frequency of 0.1Hz the membrane potential depolarises in response to brief high frequency stimulation (HFS) but this depolarisation is blocked or reversed by 1Hz action potential firing. The depolarisation of the neurones did not, however, affect the input-output function of the dentate gyrus measured by field or single cell recordings. HFS or brief forskolin application that mimics LTDepol did not alter the excitatory input-output spike coupling measured using field potential recordings. Similarly, LTDepol did not change the probability of spike firing in response to a given input. The mechanism underlying the lack of change in input-output relationship was found to be a concurrent depolarisation of the threshold potential for the initiation of action potentials. We demonstrate that physiologically relevant patterns of activity regulate the membrane potential of dentate gyrus granule cells in a bidirectional manner but the changes in membrane potential do not alter the excitability of these neurones measured by their response to excitatory inputs.


Assuntos
Giro Denteado/fisiologia , Hipocampo/fisiologia , Potenciais da Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Colforsina/farmacologia , Giro Denteado/citologia , Estimulação Elétrica , Eletrodos , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...