Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Rice (N Y) ; 8: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844118

RESUMO

BACKGROUND: Iron toxicity is a root related abiotic stress, occurring frequently in flooded soils. It can affect the yield of rice in lowland production systems. This toxicity is associated with high concentrations of reduced iron (Fe(2+)) in the soil solution. Although the first interface of the element is in the roots, the consequences of an excessive uptake can be observed in several rice tissues. In an original attempt to find both genes and transposable elements involved in the response to an iron toxicity stress, we used a microarray approach to study the transcriptional responses of rice leaves of cv. Nipponbare (Oryza sativa L. ssp. japonica) to iron excess in nutrient solution. RESULTS: A large number of genes were significantly up- or down-regulated in leaves under the treatment. We analyzed the gene ontology and metabolic pathways of genes involved in the response to this stress and the cis-regulatory elements (CREs) present in the promoter region of up-regulated genes. The majority of genes act in the pathways of lipid metabolic process, carbohydrate metabolism, biosynthesis of secondary metabolites and plant hormones. We also found genes involved in iron acquisition and mobilization, transport of cations and regulatory mechanisms for iron responses, and in oxidative stress and reactive oxygen species detoxification. Promoter regions of 27% of genes up-regulated present at least one significant occurrence of an ABA-responsive CRE. Furthermore, and for the first time, we were able to show that iron stress triggers the up-regulation of many LTR-retrotransposons. We have established a complete inventory of transposable elements transcriptionally activated under iron excess and the CREs which are present in their LTRs. CONCLUSION: The short-term response of Nipponbare seedlings to iron excess, includes activation of genes involved in iron homeostasis, in particular transporters, transcription factors and ROS detoxification in the leaves, but also many transposable elements. Our data led to the identification of CREs which are associated with both genes and LTR-retrotransposons up-regulated under iron excess. Our results strengthen the idea that LTR-retrotransposons participate in the transcriptional response to stress and could thus confer an adaptive advantage for the plant.

2.
J Appl Genet ; 48(2): 107-13, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17495343

RESUMO

Rice is a model genome for cereal research, providing important information about genome structure and evolution. Retrotransposons are common components of grass genomes, showing activity at transcription, translation and integration levels. Their abundance and ability to transpose make them good potential markers. In this study, we used 2 multilocus PCR-based techniques that detect retrotransposon integration events in the genome: IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism). Markers derived from Tos17, a copia-like endogenous retrotransposon of rice, were used to identify genetic similarity among 51 rice cultivars (Oryza sativa L.). Genetic similarity analysis was performed by means of the Dice coefficient, and dendrograms were developed by using the average linkage distance method. A cophenetic correlation coefficient was also calculated. The clustering techniques revealed a good adjustment between matrices, with correlation coefficients of 0.74 and 0.80, or lower (0.21) but still significant, between IRAP and REMAP-based techniques. Consistent clusters were found for Japanese genotypes, while a subgroup clustered the irrigated Brazilian genotypes.


Assuntos
Oryza/genética , Cruzamento , DNA de Plantas/genética , Variação Genética , Genótipo , Repetições de Microssatélites , Oryza/classificação , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Retroelementos , Sequências Repetidas Terminais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...