Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885121

RESUMO

The most common oral cavity cancer is squamous cell carcinoma (SCC), of which perineural invasion (PNI) is a significant prognostic factor associated with decreased survival and an increased rate of locoregional recurrence. In the classical theory of PNI, cancer was believed to invade nerves directly through the path of least resistance in the perineural space; however, more recent evidence suggests that PNI requires reciprocal signaling interactions between tumor cells and nerve components, particularly Schwann cells. Specifically, head and neck SCC can express neurotrophins and neurotrophin receptors that may contribute to cancer migration towards nerves, PNI, and neuritogenesis towards cancer. Through reciprocal signaling, recent studies also suggest that Schwann cells may play an important role in promoting PNI by migrating toward cancer cells, intercalating, and dispersing cancer, and facilitating cancer migration toward nerves. The interactions of neurotrophins with their high affinity receptors is a new area of interest in the development of pharmaceutical therapies for many types of cancer. In this comprehensive review, we discuss diagnosis and treatment of oral cavity SCC, how PNI affects locoregional recurrence and survival, and the impact of adjuvant therapies on tumors with PNI. We also describe the molecular and cellular mechanisms associated with PNI, including the expression of neurotrophins and their receptors, and highlight potential targets for therapeutic intervention for PNI in oral SCC.

2.
IBRO Neurosci Rep ; 11: 1-7, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34189496

RESUMO

DYT-TOR1A or DYT1 early-onset generalized dystonia is an inherited movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, or abnormal postures. The majority of the DYT1 dystonia patients have a trinucleotide GAG deletion in DYT1/TOR1A. Trihexyphenidyl (THP), an antagonist for excitatory muscarinic acetylcholine receptor M1, is commonly used to treat dystonia. Dyt1 heterozygous ΔGAG knock-in (KI) mice, which have the corresponding mutation, exhibit impaired motor-skill transfer. Here, the effect of THP injection during the treadmill training period on the motor-skill transfer to the accelerated rotarod performance was examined. THP treatment reversed the motor-skill transfer impairment in Dyt1 KI mice. Immunohistochemistry showed that Dyt1 KI mice had a significant reduction of the dorsolateral striatal cholinergic interneurons. In contrast, Western blot analysis showed no significant alteration in the expression levels of the striatal enzymes and transporters involved in the acetylcholine metabolism. The results suggest a functional alteration of the cholinergic system underlying the impairment of motor-skill transfer and the pathogenesis of DYT1 dystonia. Training with THP in a motor task may improve another motor skill performance in DYT1 dystonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...