Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Ther Drug Carrier Syst ; 41(5): 111-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38608134

RESUMO

Meloxicam, a selective COX-2 inhibitor, has demonstrated clinical effectiveness in managing inflammation and acute pain. Although available in oral and parenteral formulations such as capsule, tablet, suspension, and solution, frequent administration is necessary to maintain therapeutic efficacy, which can increase adverse effects and patient non-compliance. To address these issues, several sustained drug delivery strategies such as oral, transdermal, transmucosal, injectable, and implantable drug delivery systems have been developed for meloxicam. These sustained drug delivery strategies have the potential to improve the therapeutic efficacy and safety profile of meloxicam, thereby reducing the frequency of dosing and associated gastrointestinal side effects. The choice of drug delivery system will depend on the desired release profile, the target site of inflammation, and the mode of administration. Overall, meloxicam sustained delivery systems offer better patient compliance, and reduce the side effects, thereby improving the clinical applications of this drug. Herein, we discuss in detail different strategies for sustained delivery of meloxicam.


Assuntos
Dor Aguda , Analgésicos , Humanos , Meloxicam , Sistemas de Liberação de Medicamentos , Inflamação
2.
Bioengineering (Basel) ; 11(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534533

RESUMO

Despite rapid progress in tissue engineering, the repair and regeneration of bone defects remains challenging, especially for non-homogenous and complicated defects. We have developed and characterized biodegradable drug-eluting scaffolds for bone regeneration utilizing direct powder extrusion-based three-dimensional (3D) printing techniques. The PLGA scaffolds were fabricated using poly (lactic-co-glycolic acid) (PLGA) with inherent viscosities of 0.2 dl/g and 0.4 dl/g and ketoprofen. The effect of parameters such as the infill, geometry, and wall thickness of the drug carrier on the release kinetics of ketoprofen was studied. The release studies revealed that infill density significantly impacts the release performance, where 10% infill showed faster and almost complete release of the drug, whereas 50% infill demonstrated a sustained release. The Korsmeyer-Peppas model showed the best fit for release data irrespective of the PLGA molecular weight and infill density. It was demonstrated that printing parameters such as infill density, scaffold wall thickness, and geometry played an important role in controlling the release and, therefore, in designing customized drug-eluting scaffolds for bone regeneration.

3.
AAPS PharmSciTech ; 24(7): 200, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783858

RESUMO

Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.


Assuntos
Capsaicina , Obesidade , Humanos , Capsaicina/química , Obesidade/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Polímeros/uso terapêutico , Liberação Controlada de Fármacos
4.
Pharmaceutics ; 15(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986762

RESUMO

This study aimed to develop a microemulsion formulation for topical delivery of Diacetyl Boldine (DAB) and to evaluate its cytotoxicity against melanoma cell line (B16BL6) in vitro. Using a pseudo-ternary phase diagram, the optimal microemulsion formulation region was identified, and its particle size, viscosity, pH, and in vitro release characteristics were determined. Permeation studies were performed on excised human skin using Franz diffusion cell assembly. The cytotoxicity of the formulations on B16BL6 melanoma cell lines was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Two formulation compositions were selected based on the higher microemulsion area of the pseudo-ternary phase diagrams. The formulations showed a mean globule size of around 50 nm and a polydispersity index of <0.2. The ex vivo skin permeation study demonstrated that the microemulsion formulation exhibited significantly higher skin retention levels than the DAB solution in MCT oil (Control, DAB-MCT). Furthermore, the formulations showed substantially higher cytotoxicity toward B16BL6 cell lines than the control formulation (p < 0.001). The half-maximal inhibitory concentrations (IC50) of F1, F2, and DAB-MCT formulations against B16BL6 cells were calculated to be 1 µg/mL, 10 µg/mL, and 50 µg/mL, respectively. By comparison, the IC50 of F1 was 50-fold lower than that of the DAB-MCT formulation. The results of the present study suggest that microemulsion could be a promising formulation for the topical administration of DAB.

5.
AAPS PharmSciTech ; 24(1): 48, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702943

RESUMO

Clomiphene citrate is the first-line treatment for women with abnormal or failed ovulation. Currently, it is available as oral tablets, and the parenteral formulation does not exist. In this study, we prepared clomiphene citrate-hydroxypropyl-ß-cyclodextrin inclusion complex for its use in intravenous injection. The inclusion complex was characterized in the liquid state (phase solubility) and solid state by differential scanning calorimetry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy analyses. The sterile intravenous injection containing 0.5% clomiphene citrate was prepared and characterized for its physical properties, assay, pH, and osmolality. A stability-indicating high-performance liquid chromatography (HPLC) method for the injection was developed. The HPLC method was validated for the assay, linearity, precision and repeatability, benchtop stability, and forced degradation to elute clomiphene isomers from the degradation products. The injection was packed in sterile 10-ml glass vials with butyl rubber stoppers and stored at 40°C, room temperature, and 4°C. The samples at 0, 0.5, 1, 2, 3, and 6 months were analyzed for clarity, pH, osmolality, and drug assay. The HPLC method was linear (R2 = 0.9999), precise (0.86% relative standard deviation), and stability indicating. The stability data at the accelerated (40°C) storage condition for 6 months showed satisfactory results: the drug assay in the injection was between 90 and 105%, the injection remained clear, pH was between 4.0 and 4.4, and osmolality was between 270 and 350 mOsm. The stability data suggests that the product is stable and meets the given analytical specifications.


Assuntos
beta-Ciclodextrinas , Feminino , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/química , beta-Ciclodextrinas/química , Injeções Intravenosas , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos
6.
AAPS PharmSciTech ; 23(8): 305, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401127

RESUMO

Acyclovir a widely used drug in the treatment of herpes simplex virus (HSV) infections and lidocaine a local anesthetic were combined in a topical gel formulation. The topical gel with Transcutol P (TP) or N-methyl 2-pyrrolidone (NMP) was prepared and tested for in vitro skin permeation across the intact and microneedle-treated human cadaver skin. The topical gels containing 5% each of acyclovir and lidocaine showed optimal pH, spreadability, and 100% drug release. The transdermal flux and skin retention of the gels were significantly higher compared to Generic 5% acyclovir ointment (Zovirax) (p < 0.001), and 5% lidocaine gel (numb gel) (p < 0.05). As expected, topical gels showed a very high increase in the skin permeation across microporated skin versus intact skin. In viral infections, skin is inflamed, and barrier integrity may be disrupted. The results of the present study are significant because the co-delivery formulation showed a very high increase in the skin permeation across intact and microporated skin (versus respective commercial formulations). The results of this study demonstrate enhanced co-delivery of acyclovir and lidocaine in a topical formulation across skin (intact or barrier compromised) for the treatment of herpes virus infections.


Assuntos
Aciclovir , Lidocaína , Humanos , Pele , Administração Cutânea , Géis
7.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233061

RESUMO

Daunorubicin (DNR) and cardiolipin (CL) were co-delivered using thermosensitive liposomes (TSLs). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-myristoyl-2-stearoyl-sn-glycero-3-phosphocholine (MSPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] or DSPE-mPEG (2000) and CL were used in the formulation of liposomes at a molar ratio of 57:40:30:3:20, respectively. CL forms raft-like microdomains that may relocate and change lipid organization of the outer and inner mitochondrial membranes. Such transbilayer lipid movement eventually leads to membrane permeabilization. TSLs were prepared by thin-film hydration (drug:lipid ratio 1:5) where DNR was encapsulated within the aqueous core of the liposomes and CL acted as a component of the lipid bilayer. The liposomes exhibited high drug encapsulation efficiency (>90%), small size (~115 nm), narrow size distribution (polydispersity index ~0.12), and a rapid release profile under the influence of mild hyperthermia. The liposomes also exhibited ~4-fold higher cytotoxicity against MDA-MB-231 cells compared to DNR or liposomes similar to DaunoXome® (p < 0.001). This study provides a basis for developing a co-delivery system of DNR and CL encapsulated in liposomes for treatment of breast cancer.


Assuntos
Neoplasias da Mama , Lipossomos , Neoplasias da Mama/tratamento farmacológico , Cardiolipinas , Colesterol , Daunorrubicina/farmacologia , Feminino , Humanos , Bicamadas Lipídicas , Células MCF-7 , Fosforilcolina , Polietilenoglicóis
8.
Life (Basel) ; 12(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35207481

RESUMO

Mitragyna is a genus belonging to the Rubiaceae family and is a plant endemic to Asia and Africa. Traditionally, the plants of this genus were used by local people to treat some diseases from generation to generation. Mitragyna speciosa (Korth.) Havil. is a controversial plant from this genus, known under the trading name "kratom", and contains more than 40 different types of alkaloids. Mitragynine and 7-hydroxymitragynine have agonist morphine-like effects on opioid receptors. Globally, Mitragyna plants have high economic value. However, regulations regarding the circulation and use of these commodities vary in several countries around the world. This review article aims to comprehensively examine Mitragyna plants (mainly M. speciosa) as potential pharmacological agents by looking at various aspects of the plants. A literature search was performed and information collected using electronic databases including Scopus, ScienceDirect, PubMed, directory open access journal (DOAJ), and Google Scholar in early 2020 to mid-2021. This narrative review highlights some aspects of this genus, including historical background and botanical origins, habitat, cultivation, its use in traditional medicine, phytochemistry, pharmacology and toxicity, abuse and addiction, legal issues, and the potential of Mitragyna species as pharmaceutical products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...