Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-448155

RESUMO

BackgroundViral infections have a history of abrupt and severe eruptions through the years in the form of pandemics. And yet, definitive therapies or preventive measures are not present. PurposeHerbal medicines have been a source of various antiviral compounds. An accelerated repurposing potential of antiviral herbs can provide usable drugs and identify druggable targets. In this study, we dissect the anti-coronavirus activity of Cissampelos pareira L (Cipa). using an integrative approach. MethodsWe analysed the signature similarities between predicted antiviral agents and Cipa using the connectivity map (https://clue.io/). Next, we tested the anti-SARS-COV-2 activity of Cipa in vitro. A three-way comparative analysis of Cipa transcriptome, COVID-19 BALF transcriptome and CMAP signatures of small compounds was also performed. ResultsSeveral predicted antivirals showed a high positive connectivity score with Cipa such as apcidin, emetine, homoharringtonine etc. We also observed 98% inhibition of SARS-COV-2 replication in infected Vero cell cultures with the whole extract. Some of its prominent pure constituents e.g pareirarine, cissamine, magnoflorine exhibited 40-80% inhibition. Comparison of genes between BALF and Cipa showed an enrichment of biological processes like transcription regulation and response to lipids, to be downregulated in Cipa while being upregulated in COVID-19. CMAP also showed that Triciribine, torin-1 and VU-0365114-2 had positive connectivity with BALF 1 and 2, and negative connectivity with Cipa.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255447

RESUMO

Host genetic variants can determine the susceptibility to COVID-19 infection and severity as noted in a recent Genome-wide Association Study (GWAS) by Pairo-Castineira et al.1. Given the prominent genetic differences in Indian sub-populations as well as differential prevalence of COVID-19, here, we deploy the previous study and compute genetic risk scores in different Indian sub-populations that may predict the severity of COVID-19 outcomes in them. We computed polygenic risk scores (PRSs) in different Indian sub-populations with the top 100 single-nucleotide polymorphisms (SNPs) with a p-value cutoff of 10-6 derived from the previous GWAS summary statistics1. We selected SNPs overlapping with the Indian Genome Variation Consortium (IGVC) and with similar frequencies in the Indian population. For each population, median PRS was calculated, and a correlation analysis was performed to test the association of these genetic risk scores with COVID-19 mortality. We found a varying distribution of PRS in Indian sub-populations. Correlation analysis indicates a positive linear association between PRS and COVID-19 deaths. This was not observed with non-risk alleles in Indian sub-populations. Our analyses suggest that Indian sub-populations differ with respect to the genetic risk for developing COVID-19 mediated critical illness. Combining PRSs with other observed risk-factors in a Bayesian framework can provide a better prediction model for ascertaining high COVID-19 risk groups. This has a potential utility in the design of more effective vaccine disbursal schemes.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-431579

RESUMO

Bioactive fractions or compounds obtained from medicinal plants have been used for the treatment of multiple diseases. This effect could be due to common pathways underlying these conditions that are targeted by such medicines. In this study, we explored the molecular basis of action of one such herbal formulation Cissampelos pareira, used for the treatment of female hormone disorders and fever. Genome-wide expression studies on MCF7 cell lines treated with Cipa extract were carried out using Affymetrix arrays. Transcriptome analysis revealed a downregulation of signatures of estrogen response governed by estrogen receptor (ER). Molecular docking analysis identified 38 constituent molecules in Cipa that potentially bind ({Delta}G< -7.5) with ER at the same site as estrogen. Cipa transcriptome signatures show high positive connectivity (https://clue.io/) scores with protein translation inhibitors such as emetine (score: 99.61) and knockdown signatures of genes linked to the antiviral response such as ribosomal protein RPL7 (score: 99.92), which is also an ER coactivator. Cipa exhibits antiviral activity in dengue infected MCF7 cells that is decreased upon ESR1 (estrogen receptor 1) gene knockdown. This approach reveals a novel pathway involving ESR1-RPL7 axis that could be a potential target in dengue viral infection.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-417519

RESUMO

During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying Variants Of Concern (VOC). Besides, viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host Single Nucleotide Variations (iSNVs). Analysing 1, 347 samples collected till June 2020, we recorded 18, 146 iSNV sites throughout the SARS-CoV-2 genome. Both, mutations in RdRp as well as APOBEC and ADAR mediated RNA editing seem to contribute to the differential prevalence of iSNVs in hosts. Noteworthy, 41% of all unique iSNVs were reported as SNVs by 30th September 2020 in samples submitted to GISAID, which increased to [~]80% by 30th June 2021. Following this, analysis of another set of 1, 798 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) variations appeared as iSNVs before getting fixed in the population. We also observe hyper-editing events at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=177 SRC="FIGDIR/small/417519v3_ufig1.gif" ALT="Figure 1"> View larger version (41K): org.highwire.dtl.DTLVardef@12b6ac2org.highwire.dtl.DTLVardef@16df897org.highwire.dtl.DTLVardef@dbbec2org.highwire.dtl.DTLVardef@c8de14_HPS_FORMAT_FIGEXP M_FIG C_FIG

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-128751

RESUMO

India first detected SARS-CoV-2, causal agent of COVID-19 in late January-2020, imported from Wuhan, China. March-2020 onwards; importation of cases from rest of the countries followed by seeding of local transmission triggered further outbreaks in India. We used ARTIC protocol based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT from Oxford Nanopore Technology to understand introduction and local transmission. The analyses revealed multiple introductions of SARS-CoV-2 from Europe and Asia following local transmission. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, here, proposed as A4-clade based on its divergence within A-cluster. The viral haplotypes may link their persistence to geo-climatic conditions and host response. Despite the effectiveness of non-therapeutic interventions in India, multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...