Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Avian Dis ; 57(2): 199-204, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24689174

RESUMO

A number of parameters have been used to assess the impact ofcoccidiosis on chickens in clinical settings as well as in experimental studies. However, a rapid way to determine body composition would be useful to evaluate or compare responses to coccidia and could give further insight into the metabolic impact of infection. The current study evaluates the use of dual X-ray absorptiometry (DEXA) to determine the impact of coccidiosis on body composition in chicks receiving inoculations with single or mixed species of Eimeria. Chicks infected with Eimeria maxima, Eimeria acervulina, or Eimeria tenella had altered parameters of body composition as measured by DEXA at 6 days postinfection (PI). The greatest effects were noted in birds infected with E. acervulina or E. maxima, where lean mass and fat were reduced from control values about 75% and 85%, respectively. In chicks infected with E. tenella, tissue and fat were reduced about 10%. Bone mineral content (BMC) was about 75% of control values in birds infected with E. acervulina or E. maxima, but only E. acervulina altered bone mineral density (BMD). The decreases in BMC and BMD are likely due to malabsorption. In chicks receiving a mixed coccidian infection, all DEXA parameters were significantly decreased at 8 days PI compared with age-matched controls. As with single infections, BMD and BMC were significantly depressed (P < 0.05). Values of all DEXA parameters were near 92% of control values by day 16 PI. Analysis of all birds in the current study indicates DEXA tissue weight slightly underestimated the gravimetrically measured weight by about 3%. The current results demonstrate that DEXA is a potentially important tool for the rapid evaluation of the effect of coccidiosis on broiler chicks and suggest it can be useful for evaluation of vaccines and other disease controls.


Assuntos
Absorciometria de Fóton/métodos , Composição Corporal , Galinhas , Coccidiose/veterinária , Eimeria/fisiologia , Doenças das Aves Domésticas/parasitologia , Absorciometria de Fóton/veterinária , Criação de Animais Domésticos/métodos , Animais , Coccidiose/parasitologia , Oocistos/fisiologia
2.
Biochem Biophys Res Commun ; 416(3-4): 289-92, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22093826

RESUMO

Bone morphogenetic protein 11 (BMP11) is a key regulatory protein in skeletal development. BMP11 propeptide has been shown to antagonize GDF11 activity in vitro. To explore the role of BMP11 propeptide in skeletal formation in vivo, we generated transgenic mice with skeleton-specific overexpression of BMP11 propeptide cDNA. The mice showed a transformation of the seventh cervical vertebra into a thoracic vertebra in our previous report. Presently, further characterizations of the transgenic mice indicated that ossification in calvatia was dramatically enhanced in transgenic fetuses at 16.5 dpc in comparison with their wild-type littermates. At 10 weeks of age, bone mineral content and bone mineral density were significantly (P<0.05) higher in transgenic mice than that in their wild-type littermates based on dual energy X-ray absorptiometry analysis. The relative trabecular bone volume measured by histological analysis was dramatically increased in transgenic mice compared with their wild-type littermates. The enhanced bone formations in the transgenic mice appear to result from increase osteoblast activities as the expressions of four osteoblast markers - α1 type 1 collagen, osteocalcin, alkaline phosphatase and phex were significantly higher in transgenic fetuses than that in their wild-type littermates. These results suggest that over-expression of BMP11 propeptide stimulates bone formation by increasing osteoblast cell functions.


Assuntos
Densidade Óssea , Proteínas Morfogenéticas Ósseas/genética , Expressão Gênica , Fatores de Diferenciação de Crescimento/genética , Osteogênese/genética , Animais , Biomarcadores/metabolismo , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Transgenes
3.
Pediatr Res ; 69(4): 330-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21150693

RESUMO

A study was conducted to validate the use of a quantitative magnetic resonance (QMR) device for measuring the body composition of infants and neonates weighing < 12 kg using the pig as a model. A total of 25 piglets weighing between 2 and 12 kg were studied. Body composition was assessed by QMR, dual-energy x-ray absorptiometry (DXA), and whole-body chemical analysis (CA) of carcass for lipid and water content. The precision, mean and SD of repeated measurements, of QMR to estimate fat mass (FM), lean mass (LM), and total body water (TBW) for five consecutive scans with reposition was 12.5, 32.0, and 36.0 g, respectively. QMR measures of FM, LM, and TBW were highly and significantly correlated with CA of carcass. In terms of accuracy, mean difference between QMR and CA (percent of mean value for CA), QMR overestimated FM by 40 g (4.7%), overestimated LM by 114.9 g (2.1%), and underestimated TBW by 134.6 g (3.1%). This study concludes that QMR provides precise and accurate measures of FM, LM, and TBW in piglet weighing up to 12 kg. These results suggest that QMR can provide valuable body composition data in longitudinal studies in infants.


Assuntos
Absorciometria de Fóton/métodos , Absorciometria de Fóton/normas , Composição Corporal , Espectroscopia de Ressonância Magnética , Modelos Animais , Sus scrofa , Absorciometria de Fóton/instrumentação , Animais , Humanos , Recém-Nascido , Estudos Longitudinais , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Reprodutibilidade dos Testes
4.
Int J Body Compos Res ; 8(1): 17-29, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21152249

RESUMO

A study was conducted to appraise a new EchoMRI™ device for body composition analysis (BCA) of infants and to compare it with dual energy X-ray absorptiometry (DXA), using chemical analysis as a reference method.The calibration part of the study included cross-validation comparisons between EchoMRI™ measurements of awake, anesthetized and dead piglets of the calibration set. It also included comparison of two different approaches to refining the calibration of EchoMRI™, by low- or by high-dimensional linear regressions. Only the low-dimensional approach was applied to DXA.The validation part yielded EchoMRI™ accuracy of 27 g and 70 g for fat and total water, respectively, on piglets scanned while anesthetized, as compared with 24 g and 57 g, respectively, for DXA.EchoMRI™ precision was found to be 4 g and 7 g for fat and total water, respectively, for anesthetized piglets, as compared to 16 g and 14 g, respectively, for DXA. The differences between fat measurements of awake, anesthetized and dead piglets can be statistically significant, but are comparable in magnitude to random errors.To summarize: Characterization of random errors by CV, especially that of fat, is not suitable for BCA, whereas absolute errors or errors relative to total body weight can be applicable. Low- and high-dimensional regressions offer nearly the same accuracy improvements. Improved DXA and EchoMRI™ offer nearly the same accuracy, within 1% of weight in fat, while EchoMRI™ has better precision, within 0.2 % of weight in fat for anesthetized and dead piglets as compared to DXA's 0.5-0.6%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...