Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 129: 178-184, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37336172

RESUMO

Lipids are essential components of brain structure and shown to affect brain function. Previous studies have shown that aging men undergo greater brain atrophy than women, but whether the associations between lipids and brain atrophy differ by sex is unclear. We examined sex differences in the associations between circulating lipids by liquid chromatography-tandem mass spectrometry and the progression of MRI-derived brain atrophy index Spatial Patterns of Atrophy for Recognition of Brain Aging (SPARE-BA) over an average of 4.7 (SD = 2.3) years in 214 men and 261 women aged 60 or older who were initially cognitively normal using multivariable linear regression, adjusted for age, race, education, and baseline SPARE-BA. We found significant sex interactions for beta-oxidation rate, short-chain acylcarnitines, long-chain ceramides, and very long-chain triglycerides. Lower beta-oxidation rate and short-chain acylcarnitines in women and higher long-chain ceramides and very long-chain triglycerides in men were associated with faster increases in SPARE-BA (accelerated brain aging). Circulating lipid profiles of accelerated brain aging are sex-specific and vary by lipid classes and structure. Mechanisms underlying these sex-specific lipid profiles of brain aging warrant further investigation.


Assuntos
Envelhecimento , Caracteres Sexuais , Humanos , Feminino , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Triglicerídeos , Ceramidas , Atrofia/patologia
2.
J Intern Med ; 293(5): 589-599, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739565

RESUMO

BACKGROUND: Anisocytosis reflects unequal-sized red blood cells and is quantified using red blood cell distribution width (RDW). RDW increases with age and has been consistently associated with adverse health outcomes, such as cardiovascular disease and mortality. Why RDW increases with age is not understood. We aimed to identify plasma metabolomic markers mediating anisocytosis with aging. METHODS: We performed mediation analyses of plasma metabolomics on the association between age and RDW using resampling techniques after covariate adjustment. We analyzed data from adults aged 70 or older from the main discovery cohort of the Baltimore Longitudinal Study of Aging (BLSA, n = 477, 46% women) and validation cohorts of the Health, Aging and Body Composition Study (Health ABC, n = 620, 52% women) and Invecchiare in Chianti, Aging in the Chianti Area (InCHIANTI) study (n = 735, 57% women). Plasma metabolomics was assayed using the Biocrates MxP Quant 500 kit in BLSA and Health ABC and liquid chromatography with tandem mass spectrometry in InCHIANTI. RESULTS: In all three cohorts, symmetric dimethylarginine (SDMA) significantly mediated the association between age and RDW. Asymmetric dimethylarginine (ADMA) and 1-methylhistidine were also significant mediators in the discovery cohort and one validation cohort. In the discovery cohort, we also found choline, homoarginine, and several long-chain triglycerides significantly mediated the association between age and RDW. CONCLUSIONS AND RELEVANCE: This metabolomics study of three independent aging cohorts identified a specific set of metabolites mediating anisocytosis with aging. Whether SDMA, ADMA, and 1-methylhistidine are released by the damaged erythrocytes with high RDW or they affect the physiology of erythrocytes causing high RDW should be further investigated.


Assuntos
Doenças Cardiovasculares , Eritrócitos , Humanos , Feminino , Idoso , Masculino , Estudos Longitudinais , Eritrócitos/metabolismo , Envelhecimento , Doenças Cardiovasculares/etiologia , Triglicerídeos/metabolismo , Índices de Eritrócitos
3.
Metabolites ; 12(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448544

RESUMO

We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no decline across six aging cohorts. The mechanisms underlying this relationship are unknown. We hypothesize that individuals who experience dual decline may have specific pathophysiological pathways to dementia which can be indicated by specific metabolomic signatures. Here, we summarize blood-based metabolites that are associated with memory and gait from existing literature and discuss their relevant pathways. A total of 39 eligible studies were included in this systematic review. Metabolites that were associated with memory and gait belonged to five shared classes: sphingolipids, fatty acids, phosphatidylcholines, amino acids, and biogenic amines. The sphingolipid metabolism pathway was found to be enriched in both memory and gait impairments. Existing data may suggest that metabolites from sphingolipids and the sphingolipid metabolism pathway are important for both memory and gait impairments. Future studies using empirical data across multiple cohorts are warranted to identify metabolomic signatures of dual decline in memory and gait and to further understand its relationship with future dementia risk.

4.
Geroscience ; 44(4): 2213-2221, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35389191

RESUMO

Lysophosphatidylcholines (LPCs) are phospholipids critical in the synthesis of cardiolipin, an essential component of mitochondrial membranes. Lower plasma LPCs have been cross-sectionally associated with lower skeletal muscle mitochondrial function, but whether lower LPCs and their decline over time are longitudinally associated with an accelerated decline of mitochondria function is unknown. We analyzed data from 184 participants in the Baltimore Longitudinal Study of Aging (mean age: 74.5 years, 57% women, 25% black) who had repeated measures of plasma LPCs (16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:3, 20:4, 24:0, and 28:1) by liquid chromatography-tandem mass spectrometry and repeated measures of skeletal muscle oxidative capacity (kPCr) assessed by 31P magnetic resonance spectroscopy over an average of 2.4 years. Rates of change in kPCr and each LPC were first estimated using simple linear regression. In multivariable linear regression models adjusted for baseline demographics and PCr % depletion, lower baseline LPC 16:1 and faster rates of decline in LPC 16:1 and 18:1 were significantly associated with a faster rate of decline in kPCr (B = - 0.169, 95% CI: - 0.328, - 0.010, p = 0.038; B = 0.209, 95% CI: 0.065, 0.352, p = 0.005; B = 0.156, 95% CI: 0.011, 0.301, p = 0.035, respectively). Rates of change in other LPCs were not significantly associated with change in kPCr (all p > 0.05). Lower baseline concentrations and faster decline in selected plasma lysophosphatidylcholines over time are associated with faster decline in skeletal muscle mitochondrial function. Strategies to prevent the decline of plasma LPCs at an early stage may slow down mitochondrial function decline and impairment during aging.


Assuntos
Lisofosfatidilcolinas , Músculo Esquelético , Humanos , Feminino , Idoso , Masculino , Lisofosfatidilcolinas/metabolismo , Estudos Longitudinais , Músculo Esquelético/metabolismo , Mitocôndrias/patologia , Envelhecimento/patologia
5.
Aging Cell ; 21(2): e13552, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048491

RESUMO

BACKGROUND: Muscle mitochondrial dysfunction is associated with poor mobility in aging. Whether mitochondrial dysfunction predicts subsequent mobility decline is unknown. METHODS: We examined 380 cognitively normal participants aged 60 and older (53%women, 22%Black) who were well-functioning (gait speed ≥ 1.0 m/s) and free of Parkinson's disease and stroke at baseline and had data on baseline skeletal muscle oxidative capacity and one or more mobility assessments during an average 2.5 years. Muscle oxidative capacity was measured by phosphorus magnetic resonance spectroscopy as the post-exercise recovery rate of phosphocreatine (kPCr ). Mobility was measured by four walking tests. Associations of baseline kPCr with mobility changes were examined using linear mixed-effects models, adjusted for covariates. In a subset, we examined whether changes in muscle strength and mass affected these associations by adjusting for longitudinal muscle strength, lean mass, and fat mass. RESULTS: Lower baseline kPCr was associated with greater decline in all four mobility measures (ß, p-value: (0.036, 0.020) 6-m usual gait speed; (0.029, 0.038) 2.5-min usual gait speed; (0.034, 0.011) 6-m rapid gait speed; (-0.042, <0.001) 400-m time). In the subset, further adjustment for longitudinal muscle strength, lean mass, and fat mass attenuated longitudinal associations with changes in mobility (Δß reduced 26-63%). CONCLUSION: Among initially well-functioning older adults, worse muscle mitochondrial function predicts mobility decline, and part of this longitudinal association is explained by decline in muscle strength and mass. Our findings suggest that worse mitochondrial function contributes to mobility decline with aging. These findings need to be verified in studies correlating longitudinal changes in mitochondrial function, muscle, and mobility performance.


Assuntos
Envelhecimento , Mitocôndrias , Idoso , Envelhecimento/patologia , Baltimore , Feminino , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Mitocôndrias/patologia , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...