Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(10): 3014-3025, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36880863

RESUMO

Temperature is an important environmental variable affecting Phytophthora spp. biology. It alters the ability of species to grow, sporulate, and infect their plant host, and it is also important in mediating pathogen responses to disease control measures. Average global temperatures are increasing as a consequence of climate change, yet there are few studies that compare the effects of temperature on Phytophthora spp. that are important to the nursery industry. To address this, we conducted a series of experiments to evaluate how temperature affects the biology and control of three soilborne Phytophthora spp. prevalent in the nursery industry. In the first set of experiments, we evaluated the mycelial growth and sporulation of several Phytophthora cinnamomi, P. plurivora, and P. pini isolates at temperatures ranging from 4 to 42°C for different amounts of time (0 to 120 h). In the second set of experiments, we evaluated the response of three isolates of each species to the fungicides mefenoxam and phosphorous acid at temperatures ranging from 6 to 40°C. Results showed that each species responds differently to temperature, with P. plurivora having the greatest optimal temperature (26.6°C), P. pini the least (24.4°C), and P. cinnamomi was intermediate between the two (25.3°C). P. plurivora and P. pini had the lowest minimum temperatures (approximately 2.4°C) compared with P. cinnamomi (6.5°C), while all three species had a similar maximum temperature (approximately 35°C). When tested against mefenoxam, all three species were generally more sensitive to mefenoxam at cool temperatures (6 to 14°C) than at warmer temperatures (22 to 30°C). P. cinnamomi was also more sensitive to phosphorous acid at cool temperatures (6 to 14°C). However, both P. plurivora and P. pini tended to be more sensitive to phosphorous acid at warmer temperatures (22 to 30°C). These findings help define the temperatures at which these pathogens will be the most damaging and help delineate the temperatures at which fungicides should be applied for maximum efficacy.


Assuntos
Fungicidas Industriais , Phytophthora , Rhododendron , Phytophthora/fisiologia , Temperatura , Fungicidas Industriais/farmacologia , Doenças das Plantas
2.
Plant Dis ; 106(4): 1157-1166, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34784743

RESUMO

The degree of flooding commonly used to induce disease in Phytophthora root rot studies rarely occurs in container nurseries. Instead, over-irrigation and poor drainage result in plants periodically sitting in shallow pools of water. Rhododendron plants were grown in a noninfested substrate or substrate infested with Phytophthora cinnamomi or P. plurivora to determine whether root rot induced by flooding represents disease that occurs under simulated nursery conditions when plants are in a shallow pool of water (saucers), or are allowed to freely drain and maintained at ∼75% container capacity (CC). Generally P. cinnamomi caused more disease than P. plurivora, and all water treatments were conducive to root rot. In experiment 1, the amount of disease caused by flooding was similar to that in the saucer treatment (75% CC not tested) while in experiment 2, flooding often caused more rapid and severe disease than the saucer or 75% CC treatment. Pathogens differed in their response to water treatments. P. cinnamomi caused more disease in treatments with >90% substrate moisture for either a short (flood) or long duration (saucer), while P. plurivora was less capable of causing disease when soil moisture was maintained >90% than when substrate moisture was maintained at a more moderate level (flood, 75% CC). Our results indicate that it is not necessary to flood plants to induce disease under experimental conditions and that disease induced by flooding can represent disease in container nurseries when containers are in pools of water or maintained at ∼75% CC. In addition, our results suggest that P. cinnamomi is a more aggressive pathogen than P. plurivora in nursery conditions where drainage is poor; however, both species are capable of causing a similar amount of disease under more typical irrigation management.


Assuntos
Phytophthora , Rhododendron , Inundações , Phytophthora/fisiologia , Doenças das Plantas , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...