Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 18(10): 2042-2052, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32069385

RESUMO

Engineering high biomass plants that produce oil (triacylglycerol or TAG) in vegetative rather than seed-related tissues could help meet our growing demand for plant oil. Several studies have already demonstrated the potential of this approach by creating transgenic crop and model plants that accumulate TAG in their leaves and stems. However, TAG synthesis may compete with other important carbon and energy reserves, including carbohydrate production, and thereby limit plant growth. The aims of this study were thus: first, to investigate the effect of TAG accumulation on growth and development of previously generated high leaf oil tobacco plants; and second, to increase plant growth and/or oil yields by further altering carbon fixation and partitioning. This study showed that TAG accumulation varied with leaf and plant developmental stage, affected leaf carbon and nitrogen partitioning and reduced the relative growth rate and final biomass of high leaf oil plants. To overcome these growth limitations, four genes related to carbon fixation (encoding CBB cycle enzymes SBPase and chloroplast-targeted FBPase) or carbon partitioning (encoding sucrose biosynthetic enzyme cytosolic FBPase and lipid-related transcription factor DOF4) were overexpressed in high leaf oil plants. In glasshouse conditions, all four constructs increased early growth without affecting TAG accumulation while chloroplast-targeted FBPase and DOF4 also increased final biomass and oil yields. These results highlight the reliance of plant growth on carbon partitioning, in addition to carbon supply, and will guide future attempts to improve biomass and TAG accumulation in transgenic leaf oil crops.

2.
J Exp Bot ; 68(14): 3891-3902, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28520898

RESUMO

Carbon-concentrating mechanisms (CCMs) enable efficient photosynthesis and growth in CO2-limiting environments, and in eukaryotic microalgae localisation of Rubisco to a microcompartment called the pyrenoid is key. In the model green alga Chlamydomonas reinhardtii, Rubisco preferentially relocalises to the pyrenoid during CCM induction and pyrenoid-less mutants lack a functioning CCM and grow very poorly at low CO2. The aim of this study was to investigate the CO2 response of pyrenoid-positive (pyr+) and pyrenoid-negative (pyr-) mutant strains to determine the effect of pyrenoid absence on CCM induction and gene expression. Shotgun proteomic analysis of low-CO2-adapted strains showed reduced accumulation of some CCM-related proteins, suggesting that pyr- has limited capacity to respond to low-CO2 conditions. Comparisons between gene transcription and protein expression revealed potential regulatory interactions, since Rubisco protein linker (EPYC1) protein did not accumulate in pyr- despite increased transcription, while elements of the LCIB/LCIC complex were also differentially expressed. Furthermore, pyr- showed altered abundance of a number of proteins involved in primary metabolism, perhaps due to the failure to adapt to low CO2. This work highlights two-way regulation between CCM induction and pyrenoid formation, and provides novel candidates for future studies of pyrenoid assembly and CCM function.


Assuntos
Proteínas de Algas/genética , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Expressão Gênica , Fotossíntese , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
3.
Proc Natl Acad Sci U S A ; 113(21): 5958-63, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27166422

RESUMO

Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.


Assuntos
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Organelas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Chlamydomonas reinhardtii/genética , Organelas/genética , Ribulose-Bifosfato Carboxilase/genética
4.
Plant Physiol ; 166(2): 1073-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25106822

RESUMO

In the model green alga Chlamydomonas reinhardtii, a carbon-concentrating mechanism (CCM) is induced under low CO2 in the light and comprises active inorganic carbon transport components, carbonic anhydrases, and aggregation of Rubisco in the chloroplast pyrenoid. Previous studies have focused predominantly on asynchronous cultures of cells grown under low versus high CO2. Here, we have investigated the dynamics of CCM activation in synchronized cells grown in dark/light cycles compared with induction under low CO2. The specific focus was to undertake detailed time course experiments comparing physiology and gene expression during the dark-to-light transition. First, the CCM could be fully induced 1 h before dawn, as measured by the photosynthetic affinity for inorganic carbon. This occurred in advance of maximum gene transcription and protein accumulation and contrasted with the coordinated induction observed under low CO2. Between 2 and 1 h before dawn, the proportion of Rubisco and the thylakoid lumen carbonic anhydrase in the pyrenoid rose substantially, coincident with increased CCM activity. Thus, other mechanisms are likely to activate the CCM before dawn, independent of gene transcription of known CCM components. Furthermore, this study highlights the value of using synchronized cells during the dark-to-light transition as an alternative means of investigating CCM induction.


Assuntos
Carbono/metabolismo , Chlamydomonas reinhardtii/fisiologia , Escuridão , Luz , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Expressão Gênica , Genes de Plantas , Proteínas de Plantas/biossíntese
5.
Proc Natl Acad Sci U S A ; 109(47): 19474-9, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23112177

RESUMO

The pyrenoid is a subcellular microcompartment in which algae sequester the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The pyrenoid is associated with a CO(2)-concentrating mechanism (CCM), which improves the operating efficiency of carbon assimilation and overcomes diffusive limitations in aquatic photosynthesis. Using the model alga Chlamydomonas reinhardtii, we show that pyrenoid formation, Rubisco aggregation, and CCM activity relate to discrete regions of the Rubisco small subunit (SSU). Specifically, pyrenoid occurrence was shown to be conditioned by the amino acid composition of two surface-exposed α-helices of the SSU: higher plant-like helices knock out the pyrenoid, whereas native algal helices establish a pyrenoid. We have also established that pyrenoid integrity was essential for the operation of an active CCM. With the algal CCM being functionally analogous to the terrestrial C(4) pathway in higher plants, such insights may offer a route toward transforming algal and higher plant productivity for the future.


Assuntos
Chlamydomonas/enzimologia , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Sequência de Aminoácidos , Processos Autotróficos/efeitos dos fármacos , Carbono/metabolismo , Dióxido de Carbono/farmacologia , Chlamydomonas/efeitos dos fármacos , Chlamydomonas/crescimento & desenvolvimento , Chlamydomonas/ultraestrutura , Deleção de Genes , Cinética , Dados de Sequência Molecular , Organelas/ultraestrutura , Oxigênio/metabolismo , Fenótipo , Fotossíntese/efeitos dos fármacos , Estrutura Secundária de Proteína , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/enzimologia , Relação Estrutura-Atividade
6.
Plant Methods ; 6: 20, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20807444

RESUMO

BACKGROUND: The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. RESULTS: Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h), with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. CONCLUSIONS: The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...