Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36692218

RESUMO

The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFß signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas de Ligação a RNA , Animais , Divisão Celular , Proliferação de Células , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ativação Transcricional
2.
Sci Rep ; 12(1): 21634, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517509

RESUMO

Intronic polymorphic TOMM40 variants increasing TOMM40 mRNA expression are strongly correlated to late onset Alzheimer's Disease. The gene product, hTomm40, encoded in the APOE gene cluster, is a core component of TOM, the translocase that imports nascent proteins across the mitochondrial outer membrane. We used Drosophila melanogaster eyes as an in vivo model to investigate the relationship between elevated Tom40 (the Drosophila homologue of hTomm40) expression and neurodegeneration. Here we provide evidence that an overabundance of Tom40 in mitochondria invokes caspase-dependent cell death in a dose-dependent manner, leading to degeneration of the primarily neuronal eye tissue. Degeneration is contingent on the availability of co-assembling TOM components, indicating that an increase in assembled TOM is the factor that triggers apoptosis and degeneration in a neural setting. Eye death is not contingent on inner membrane translocase components, suggesting it is unlikely to be a direct consequence of impaired import. Another effect of heightened Tom40 expression is upregulation and co-association of a mitochondrial oxidative stress biomarker, DmHsp22, implicated in extension of lifespan, providing new insight into the balance between cell survival and death. Activation of regulated death pathways, culminating in eye degeneration, suggests a possible causal route from TOMM40 polymorphisms to neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Apoptose/genética , Proteínas de Transporte/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Development ; 147(11)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527935

RESUMO

Here, we report novel tumour suppressor activity for the Drosophila Argonaute family RNA-binding protein AGO1, a component of the miRNA-dependent RNA-induced silencing complex (RISC). The mechanism for growth inhibition does not, however, involve canonical roles as part of the RISC; rather, AGO1 controls cell and tissue growth by functioning as a direct transcriptional repressor of the master regulator of growth, Myc. AGO1 depletion in wing imaginal discs drives a significant increase in ribosome biogenesis, nucleolar expansion and cell growth in a manner dependent on Myc abundance. Moreover, increased Myc promoter activity and elevated Myc mRNA in AGO1-depleted animals requires RNA polymerase II transcription. Further support for transcriptional AGO1 functions is provided by physical interaction with the RNA polymerase II transcriptional machinery (chromatin remodelling factors and Mediator Complex), punctate nuclear localisation in euchromatic regions and overlap with Polycomb Group transcriptional silencing loci. Moreover, significant AGO1 enrichment is observed on the Myc promoter and AGO1 interacts with the Myc transcriptional activator Psi. Together, our data show that Drosophila AGO1 functions outside of the RISC to repress Myc transcription and inhibit developmental cell and tissue growth.This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Larva/metabolismo , MicroRNAs/metabolismo , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Interferência de RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/fisiologia
4.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118713, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246948

RESUMO

WD40-Repeat Protein 62 (WDR62) is required to maintain neural and glial cell populations during embryonic brain growth. Although elevated expression of WDR62 is frequently associated with several tumour types, potential effects of excess WDR62 on proliferative growth remain undefined. Here, we demonstrate that glia specific overexpression of WDR62 in Drosophila larval brains resulted in increased cell size, over-proliferation and increased brain volume, without overt disruption of tissue organization. We further demonstrate WDR62 promoted over-proliferation and brain overgrowth by activating AURKA and pAKT signalling to increase MYC function in glial cells. Together these data suggest WDR62 normally functions in the glial lineage to activate oncogenic signalling networks, promoting proliferation and brain overgrowth.


Assuntos
Aurora Quinase A/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proliferação de Células/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Neurogênese/genética , Neuroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Fuso Acromático/genética
5.
J Speech Lang Hear Res ; 63(1): 206-215, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31855605

RESUMO

Purpose Language difficulties are prevalent among children born preterm. Existing studies have largely used standardized language tests, providing limited scope for detailed descriptive examination of preterm language. This study aimed to examine differences in conversational language between children born < 30 weeks and at term as well as correlations between language sample analysis (LSA) and a standardized language tool. Method Two hundred four 3-year-olds (103 born < 30 weeks, 101 born at term) recruited at birth provided a 10-min language sample and completed the Preschool Language Scales-Fifth Edition (I. Zimmerman, Steiner, & Pond, 2011). LSA was conducted using the Systematic Analysis of Language Transcripts and Index of Productive Syntax. Group differences were analyzed using linear regression, and Pearson correlation coefficient (coef) was used to determine correlations between measures. Results Children born < 30 weeks scored lower than term-born peers on multiple metrics when controlled for confounding factors (sex, high social risk, multilingualism, and diagnosed neurodevelopmental disorders), including mean length of utterance in morphemes (coef = -0.28, 95% confidence interval [CI] [-0.56, 0.01]) and words (coef = -0.29, 95% CI [-0.53, -0.05]), number of different word roots (coef = -10.04, 95% CI [-17.93, -2.14]), and Index of Productive Syntax sentence structures (coef = -1.81, 95% CI [-3.10, -0.52]). Other variables (e.g., number of utterances, number of nouns and adjectives) were not significantly different between groups. LSA and the Preschool Language Scales-Fifth Edition were at most moderately correlated (≤ .45). Conclusions Three-year-old children born preterm demonstrated poorer conversational language than children born at term, with some specific areas of deficit emerging. Furthermore, formal assessment and LSA appear to provide relatively distinct and yet complementary data to guide diagnostic and intervention decisions. Supplemental Material https://doi.org/10.23641/asha.11368073.


Assuntos
Linguagem Infantil , Lactente Extremamente Prematuro/psicologia , Transtornos do Desenvolvimento da Linguagem/psicologia , Nascimento a Termo/psicologia , Comportamento Verbal , Pré-Escolar , Comunicação , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Estudos Prospectivos
6.
Stem Cell Reports ; 9(1): 32-41, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28625535

RESUMO

The second most commonly mutated gene in primary microcephaly (MCPH) patients is wd40-repeat protein 62 (wdr62), but the relative contribution of WDR62 function to the growth of major brain lineages is unknown. Here, we use Drosophila models to dissect lineage-specific WDR62 function(s). Interestingly, although neural stem cell (neuroblast)-specific depletion of WDR62 significantly decreased neuroblast number, brain size was unchanged. In contrast, glial lineage-specific WDR62 depletion significantly decreased brain volume. Moreover, loss of function in glia not only decreased the glial population but also non-autonomously caused neuroblast loss. We further demonstrated that WDR62 controls brain growth through lineage-specific interactions with master mitotic signaling kinase, AURKA. Depletion of AURKA in neuroblasts drives brain overgrowth, which was suppressed by WDR62 co-depletion. In contrast, glial-specific depletion of AURKA significantly decreased brain volume, which was further decreased by WDR62 co-depletion. Thus, dissecting relative contributions of MCPH factors to individual neural lineages will be critical for understanding complex diseases such as microcephaly.


Assuntos
Aurora Quinase A/metabolismo , Encéfalo/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Mapas de Interação de Proteínas , Animais , Aurora Quinase A/genética , Encéfalo/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Mitose , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia
7.
Nucleic Acids Res ; 44(16): 7646-58, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27207882

RESUMO

Despite two decades of research, the major function of FBP-family KH domain proteins during animal development remains controversial. The literature is divided between RNA processing and transcriptional functions for these single stranded nucleic acid binding proteins. Using Drosophila, where the three mammalian FBP proteins (FBP1-3) are represented by one ortholog, Psi, we demonstrate the primary developmental role is control of cell and tissue growth. Co-IP-mass spectrometry positioned Psi in an interactome predominantly comprised of RNA Polymerase II (RNA Pol II) transcriptional machinery and we demonstrate Psi is a potent transcriptional activator. The most striking interaction was between Psi and the transcriptional mediator (MED) complex, a known sensor of signaling inputs. Moreover, genetic manipulation of MED activity modified Psi-dependent growth, which suggests Psi interacts with MED to integrate developmental growth signals. Our data suggest the key target of the Psi/MED network in controlling developmentally regulated tissue growth is the transcription factor MYC. As FBP1 has been implicated in controlling expression of the MYC oncogene, we predict interaction between MED and FBP1 might also have implications for cancer initiation and progression.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Complexo Mediador/metabolismo , Morfogênese , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Nucleares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA , Transcrição Gênica
8.
Cell Signal ; 27(10): 2045-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26215099

RESUMO

Increased rates of ribosome biogenesis and biomass accumulation are fundamental properties of rapidly growing and dividing malignant cells. The MYC oncoprotein drives growth predominantly via its ability to upregulate the ribosome biogenesis program, in particular stimulating the activity of the RNA Polymerase I (Pol I) machinery to increase ribosomal RNA (rRNA) transcription. Although MYC function is known to be highly dependent on the cellular signalling context, the pathways interacting with MYC to regulate transcription of ribosomal genes (rDNA) in vivo in response to growth factor status, nutrient availability and cellular stress are only beginning to be understood. To determine factors critical to MYC-dependent stimulation of rDNA transcription in vivo, we performed a transient expression screen for known oncogenic signalling pathways in Drosophila. Strikingly, from the broad range of pathways tested, we found that ribosomal protein S6 Kinase (S6K) activity, downstream of the TOR pathway, was the only factor rate-limiting for the rapid induction of rDNA transcription due to transiently increased MYC. Further, we demonstrated that one of the mechanism(s) by which MYC and S6K cooperate is through coordinate activation of the essential Pol I transcription initiation factor TIF-1A (RRN 3). As Pol I targeted therapy is now in phase 1 clinical trials in patients with haematological malignancies, including those driven by MYC, these data suggest that therapies dually targeting Pol I transcription and S6K activity may be effective in treating MYC-driven tumours.


Assuntos
DNA Ribossômico/genética , Drosophila melanogaster/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Transcrição Gênica , Animais , Nucléolo Celular/enzimologia , Nucléolo Celular/ultraestrutura , Olho Composto de Artrópodes/enzimologia , Olho Composto de Artrópodes/ultraestrutura , DNA Ribossômico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Glândulas Salivares/enzimologia , Glândulas Salivares/ultraestrutura , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 6: 7404, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074141

RESUMO

Nucleotide excision DNA repair (NER) pathway mutations cause neurodegenerative and progeroid disorders (xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD)), which are inexplicably associated with (XP) or without (CS/TTD) cancer. Moreover, cancer progression occurs in certain patients, but not others, with similar C-terminal mutations in the XPB helicase subunit of transcription and NER factor TFIIH. Mechanisms driving overproliferation and, therefore, cancer associated with XPB mutations are currently unknown. Here using Drosophila models, we provide evidence that C-terminally truncated Hay/XPB alleles enhance overgrowth dependent on reduced abundance of RNA recognition motif protein Hfp/FIR, which transcriptionally represses the MYC oncogene homologue, dMYC. The data demonstrate that dMYC repression and dMYC-dependent overgrowth in the Hfp hypomorph is further impaired in the C-terminal Hay/XPB mutant background. Thus, we predict defective transcriptional repression of MYC by the Hfp orthologue, FIR, might provide one mechanism for cancer progression in XP/CS.


Assuntos
Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Transcrição/genética , Animais , Imunoprecipitação da Cromatina , DNA Helicases/genética , Drosophila melanogaster , Regulação da Expressão Gênica , Imuno-Histoquímica , Mutação , Transcrição Gênica , Xeroderma Pigmentoso/genética
10.
Genetics ; 196(2): 443-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336747

RESUMO

The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Regulação da Expressão Gênica , Mitose , Dedos de Zinco/fisiologia , Animais , Apoptose/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Masculino , Organogênese/genética , Fenótipo , Interferência de RNA , Fuso Acromático/genética , Fuso Acromático/metabolismo , Asas de Animais/crescimento & desenvolvimento
11.
BMC Dev Biol ; 13: 28, 2013 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23848468

RESUMO

BACKGROUND: Ecdysone triggers transcriptional changes via the ecdysone receptor (EcR) to coordinate developmental programs of apoptosis, cell cycle and differentiation. Data suggests EcR affects cell cycle gene expression indirectly and here we identify Wingless as an intermediary factor linking EcR to cell cycle. RESULTS: We demonstrate EcR patterns cell cycle across the presumptive Drosophila wing margin by constraining wg transcription to modulate CycB expression, but not the previously identified Wg-targets dMyc or Stg. Furthermore co-knockdown of Wg restores CycB patterning in EcR knockdown clones. Wg is not a direct target of EcR, rather we demonstrate that repression of Wg by EcR is likely mediated by direct interaction between the EcR-responsive zinc finger transcription factor Crol and the wg promoter. CONCLUSIONS: Thus we elucidate a critical mechanism potentially connecting ecdysone with patterning signals to ensure correct timing of cell cycle exit and differentiation during margin wing development.


Assuntos
Ciclo Celular , Ciclina B/metabolismo , Proteínas de Drosophila/genética , Drosophila/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/fisiologia , Proteína Wnt1/genética , Animais , Asas de Animais/metabolismo
12.
PLoS Genet ; 7(12): e1002408, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22194697

RESUMO

The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycE(JP)). We demonstrated that the suppression of cycE(JP) by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycE(JP) is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously.


Assuntos
Ciclina E/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Ecdisona/metabolismo , Olho/crescimento & desenvolvimento , Proteína S6 Ribossômica/genética , Animais , Animais Geneticamente Modificados , Proliferação de Células , Ciclina E/genética , Drosophila melanogaster/metabolismo , Glândulas Endócrinas/metabolismo , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Fenótipo , Interferência de RNA , Proteína S6 Ribossômica/metabolismo
13.
Fly (Austin) ; 5(2): 129-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21245665

RESUMO

Here we highlight our recent study, which revealed a mechanism critical for tight regulation of Drosophila myc (dmyc) transcription. Our previous work demonstrated that the RRM (RNA recognition motif) protein Half pint (Hfp) behaves as a growth and cell cycle inhibitor and work from D. Levens group has shown the mammalian ortholog, FIR (the FBP Interacting Repressor), is a tumor suppressor. Although RRM domain containing proteins such as Hfp and FIR have been ascribed splicing and transcriptional roles, our work suggests that Hfp is likely to achieve cell cycle inhibition via direct repression of dmyc transcription. We have demonstrated that Hfp binds to the dmyc promoter and is essential for repression of dmyc transcription, which requires interaction between Hfp and the DNA helicase subunit of Transcription Factor IIH (TFIIH), Haywire (Hay). Consistent with the increased levels of dmyc transcription, loss of Hfp makes cells overgrow in a manner dependent on the presence of dMyc. Thus our work has demonstrated that Hfp is critical for repression of dmyc and suggested a transcriptional, rather than splicing, mechanism underlies the ability of Hfp to regulate dMyc and function as a tumor suppressor. Thus we have extended knowledge from previous mammalian studies by providing in vivo evidence that the FIR homolog Hfp is required for repression of dmyc transcription, suggesting the mechanism proposed for repression of c-myc transcription by the mammalian RRM protein FIR is conserved in Drosophila.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Modelos Genéticos , Fatores de Transcrição/genética , Animais , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Drosophila/citologia , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Transdução de Sinais , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
14.
Development ; 137(17): 2875-84, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667914

RESUMO

An unresolved question regarding the RNA-recognition motif (RRM) protein Half pint (Hfp) has been whether its tumour suppressor behaviour occurs by a transcriptional mechanism or via effects on splicing. The data presented here demonstrate that Hfp achieves cell cycle inhibition via an essential role in the repression of Drosophila myc (dmyc) transcription. We demonstrate that regulation of dmyc requires interaction between the transcriptional repressor Hfp and the DNA helicase subunit of TFIIH, Haywire (Hay). In vivo studies show that Hfp binds to the dmyc promoter and that repression of dmyc transcription requires Hfp. In addition, loss of Hfp results in enhanced cell growth, which depends on the presence of dMyc. This is consistent with Hfp being essential for inhibition of dmyc transcription and cell growth. Further support for Hfp controlling dmyc transcriptionally comes from the demonstration that Hfp physically and genetically interacts with the XPB helicase component of the TFIIH transcription factor complex, Hay, which is required for normal levels of dmyc expression, cell growth and cell cycle progression. Together, these data demonstrate that Hfp is crucial for repression of dmyc, suggesting that a transcriptional, rather than splicing, mechanism underlies the regulation of dMyc and the tumour suppressor behaviour of Hfp.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Genes de Insetos , Genes myc , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proliferação de Células , DNA Helicases/metabolismo , Primers do DNA/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Modelos Biológicos , Regiões Promotoras Genéticas , Interferência de RNA , Fase S , Transdução de Sinais , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
15.
Development ; 135(16): 2707-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18614577

RESUMO

The steroid hormone Ecdysone is crucial for developmental cell death, proliferation and morphogenesis in Drosophila. Herein, we delineate a molecular pathway linking Ecdysone signalling to cell cycle regulation in the Drosophila developing wing. We present evidence that the Ecdysone-inducible zinc-finger transcription factor Crol provides a crucial link between the Ecdysone steroid hormone pathway and the Wingless (Wg) signalling pathway in Drosophila. We identified Crol as a strong enhancer of a wing phenotype generated by overexpression of the Wg-inducible cell cycle inhibitor Hfp. We demonstrate that Crol is required for cell cycle progression: crol mutant clones have reduced cell cycles and are removed by apoptosis, while upregulation of Crol overrides the Wg-mediated developmental cell cycle arrest in the zone of non-proliferating cells in the wing disc. Furthermore, we show that Crol acts to repress wg transcription. We also show that overexpression of crol results in downregulation of Hfp, consistent with the identification of the crol mutant as a dominant enhancer of the Hfp overexpression phenotype. Taken together, our studies have revealed a novel mechanism for cell cycle regulation, whereby Crol links steroid hormone signals to Wg signalling and the regulation of crucial cell cycle targets.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Ecdisona/farmacologia , Fatores de Transcrição/fisiologia , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Asas de Animais/citologia , Asas de Animais/metabolismo , Proteína Wnt1/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...