Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 145(2): 207-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25644339

RESUMO

BACKGROUND: The anabolic response of skeletal muscle to essential amino acids (EAAs) is dose dependent, maximal at modest doses, and short lived, even with continued EAA availability, a phenomenon termed "muscle-full." However, the effect of EAA ingestion profile on muscle metabolism remains undefined. OBJECTIVE: We determined the effect of Bolus vs. Spread EAA feeding in young men and hypothesized that muscle-full is regulated by a dose-, not delivery profile-, dependent mechanism. METHODS: We provided 16 young healthy men with 15 g mixed-EAA, either as a single dose ("Bolus"; n = 8) or in 4 fractions at 45-min intervals ("Spread"; n = 8). Plasma insulin and EAA concentrations were assayed by ELISA and ion-exchange chromatography, respectively. Limb blood flow by was determined by Doppler ultrasound, muscle microvascular flow by Sonovue (Bracco) contrast-enhanced ultrasound, and phosphorylation of mammalian target of rapamycin complex 1 substrates by immunoblotting. Intermittent muscle biopsies were taken to quantify myofibrillar-bound (13)C6-phenylalanine to determine muscle protein synthesis (MPS). RESULTS: Bolus feeding achieved rapid insulinemia (13.6 µIU · mL(-1), 25 min after commencement of feeding), aminoacidemia (∼2500 µM at 45 min), and capillary recruitment (+45% at 45 min), whereas Spread feeding achieved attenuated insulin responses, gradual low-amplitude aminoacidemia (peak: ∼1500 µM at 135 min), and no detectable capillary recruitment (all P < 0.01 vs. Bolus). Despite these differences, identical anabolic responses were observed; fasting fractional synthetic rates of 0.054% · h(-1) (Bolus) and 0.066% · h(-1) (Spread) increased to 0.095% and 0.104% · h(-1) (no difference in increment or final values between regimens). With both Spread and Bolus feeding strategies, a latency of at least 90 min was observed before an upswing in MPS was evident. Similarly with both feeding strategies, MPS returned to fasting rates by 180 min despite elevated circulating EAAs. CONCLUSION: These data do not support EAA delivery profile as an important determinant of anabolism in young men at rest, nor rapid aminoacidemia/leucinemia as being a key factor in maximizing MPS. This trial was registered at clinicaltrials.gov as NCT01735539.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Músculo Esquelético/fisiologia , Administração Oral , Aminoácidos Essenciais/sangue , Estudos Transversais , Relação Dose-Resposta a Droga , Humanos , Insulina/sangue , Masculino , Proteínas Musculares/metabolismo , Fenilalanina/sangue , Fosforilação , Biossíntese de Proteínas , Adulto Jovem
2.
Physiol Rep ; 1(5): e00119, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24303186

RESUMO

Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast-enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (∼20 years) and older (∼70 years) men. Intensity-time replenishment curves were made via an ultrasound probe "fixed" over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real-time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme-linked immunosorbent assay. Steady-state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35-40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age-related declines in muscle glucose disposal, protein anabolism, and muscle mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...