Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2325, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485709

RESUMO

Type VI CRISPR enzymes have been developed as programmable RNA-guided Cas proteins for eukaryotic RNA editing. Notably, Cas13 has been utilized for site-targeted single base edits, demethylation, RNA cleavage or knockdown and alternative splicing. However, the ability to edit large stretches of mRNA transcripts remains a significant challenge. Here, we demonstrate that CRISPR-Cas13 systems can be repurposed to assist trans-splicing of exogenous RNA fragments into an endogenous pre-mRNA transcript, a method termed CRISPR Assisted mRNA Fragment Trans-splicing (CRAFT). Using split reporter-based assays, we evaluate orthogonal Cas13 systems, optimize guide RNA length and screen for optimal trans-splicing site(s) across a range of intronic targets. We achieve markedly improved editing of large 5' and 3' segments in different endogenous mRNAs across various mammalian cell types compared to other spliceosome-mediated trans-splicing methods. CRAFT can serve as a versatile platform for attachment of protein tags, studying the impact of multiple mutations/single nucleotide polymorphisms, modification of untranslated regions (UTRs) or replacing large segments of mRNA transcripts.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , RNA Mensageiro/genética , Trans-Splicing , RNA/genética , Mamíferos/genética
2.
Nat Protoc ; 18(11): 3413-3459, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735235

RESUMO

Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans ~95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise 'hotspots' on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.


Assuntos
Capsídeo , Dependovirus , Animais , Humanos , Capsídeo/química , Dependovirus/genética , Terapia Genética/métodos , Técnicas de Transferência de Genes , Proteínas do Capsídeo/genética , Vetores Genéticos , Transdução Genética
4.
Dev Neurosci ; 41(5-6): 300-317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32541147

RESUMO

BACKGROUND/AIMS: Prenatal microcephaly is posited to arise from aberrant mitosis of neural progenitors, which disrupts both neuronal production and survival. Although microcephaly has both a genetic and environmental etiology, the mechanisms by which dysregulation of mitosis causes microcephaly are poorly understood. We previously discovered that prolonged mitosis of mouse neural progenitors, either ex vivo or in vitro, directly alters progeny cell fate, -resulting in precocious differentiation and apoptosis. This raises questions as to whether prolonged progenitor mitosis affects cell fate and neurogenesis in vivo, and what are the underlying mechanisms? METHODS/RESULTS: Towards addressing these knowledge gaps, we developed an in vivo model of mitotic delay. This uses pharmacological inhibition to acutely and reversibly prolong mitosis during cortical development, and fluorescent dyes to label direct progeny. Using this model, we discovered that a causal relationship between mitotic delay of neural progenitors and altered progeny cell fate is evident in vivo. Using transcriptome analyses to investigate the state of delayed cells and their progeny, we uncovered potential molecular mechanisms by which prolonged mitosis induces altered cell fates, including DNA damage and p53 signaling. We then extended our studies to human neural progenitors, demonstrating that lengthened mitosis duration also directly alters neuronal cell fate. CONCLUSIONS: This study establishes a valuable new experimental paradigm towards understanding mechanisms whereby lengthened mitosis duration may explain some cases of microcephaly.

5.
Viruses ; 10(2)2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495257

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that is transmitted to humans through the bite of an infected mosquito or through sexual contact with an infected partner. ZIKV infection during pregnancy has been associated with numerous fetal abnormalities, including prenatal lethality and microcephaly. However, until recent outbreaks in the Americas, ZIKV has been relatively understudied, and therefore the biology and pathogenesis of ZIKV infection remain incompletely understood. Better methods to study ZIKV infection in live cells could enhance our understanding of the biology of ZIKV and the mechanisms by which ZIKV contributes to fetal abnormalities. To this end, we developed a fluorescent cell-based reporter system allowing for live imaging of ZIKV-infected cells. This system utilizes the protease activity of the ZIKV non-structural proteins 2B and 3 (NS2B-NS3) to specifically mark virus-infected cells. Here, we demonstrate the utility of this fluorescent reporter for identifying cells infected by ZIKV strains of two lineages. Further, we use this system to determine that apoptosis is induced in cells directly infected with ZIKV in a cell-autonomous manner. Ultimately, approaches that can directly track ZIKV-infected cells at the single cell-level have the potential to yield new insights into the host-pathogen interactions that regulate ZIKV infection and pathogenesis.


Assuntos
Técnicas Citológicas/métodos , Genes Reporter/genética , Microscopia de Fluorescência , Imagem Óptica , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia , Zika virus/genética , Transporte Ativo do Núcleo Celular , Animais , Morte Celular , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Plasmídeos , Serina Endopeptidases/metabolismo , Virologia , Zika virus/classificação , Infecção por Zika virus/patologia
6.
Front Neurosci ; 10: 111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047330

RESUMO

Throughout development, neural stem cells (NSCs) give rise to differentiated neurons, astrocytes, and oligodendrocytes which together modulate perception, memory, and behavior in the adult nervous system. To understand how NSCs contribute to postnatal/adult brain remodeling and repair after injury, the lateral ventricular (LV) neurogenic niche in the rodent postnatal brain serves as an excellent model system. It is a specialized area containing self-renewing GFAP(+) astrocytes functioning as NSCs generating new neurons throughout life. In addition to this now well-studied regenerative process, the LV niche also generates differentiated astrocytes, playing an important role for glial scar formation after cortical injury. While LV NSCs can be clearly distinguished from their neuroblast and oligodendrocyte progeny via molecular markers, the astrocytic identity of NSCs has complicated their distinction from terminally-differentiated astrocytes in the niche. Our current models of postnatal/adult LV neurogenesis do not take into account local astrogenesis, or the possibility that cellular markers may be similar between non-dividing GFAP(+) NSCs and their differentiated astrocyte daughters. Postnatal LV neurogenesis is regulated by NSC-intrinsic mechanisms interacting with extracellular/niche-driven cues. It is generally believed that these local effects are responsible for sustaining neurogenesis, though behavioral paradigms and disease states have suggested possibilities for neural circuit-level modulation. With recent experimental findings that neuronal stimulation can directly evoke responses in LV NSCs, it is possible that this exciting property will add a new dimension to identifying postnatal/adult NSCs. Here, we put forth a notion that neural circuit-level input can be a distinct characteristic defining postnatal/adult NSCs from non-neurogenic astroglia.

7.
Genes Dev ; 27(21): 2293-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186975

RESUMO

Long-range integration of transcriptional inputs is critical for gene expression, yet the mechanisms remain poorly understood. We investigated the molecular determinants that confer fidelity to expression of the heart identity gene even-skipped (eve). Targeted deletion of regions bound by the repressor Yan defined two novel enhancers that contribute repressive inputs to stabilize tissue-specific output from a third enhancer. Deletion of any individual enhancer reduced Yan occupancy at the other elements, impacting eve expression, cell fate specification, and cardiac function. These long-range interactions may be stabilized by three-dimensional chromatin contacts that we detected between the elements. Our work provides a new paradigm for chromatin-level integration of general repressive inputs with specific patterning information to achieve robust gene expression.


Assuntos
Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Animais , Drosophila melanogaster/química , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos/genética , Proteínas do Olho/genética , Coração/crescimento & desenvolvimento , Heterozigoto , Ligação Proteica , Proteínas Repressoras/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...