Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(59): e202301764, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37544911

RESUMO

Supramolecular macrocyclic forces have been used to trap phytate, myo-inositol-1,2,3,4,5,6-hexakisphosphate, a key bioanion with multiple roles in metabolic processes. Due to the complex chemistry of six multivalent phosphates surrounding the small, cyclic inositol framework, crystallographic information of simple phytate salts has been elusive. This report represents a combined crystallographic, theoretical, and solution binding investigation of a supramolecular macrocyclic complex of phytate. Together, the results provide significant insight to phytate's intramolecular and intermolecular interactions at the microenvironment level. The macrocycle-phytate aggregates consist of phytate anionic pairs, each partly sandwiched by two 24-membered, amide/amine-based cationic macrocycles. The phytate ion pairs hold the tetrameric macrocyclic array together by six strong intermolecular hydrogen bonds. Both phytates crystallize in 1a5e phosphate conformations (one axial (P2) and five equatorial phosphates). Solution NMR binding studies in 1 : 1 DMSO-d6 : D2 O indicate 2 : 1 macrocycle:phytate associations, suggesting that the sandwich-like nature of the complex holds together in solution. DFT studies indicate the likely occurrence of dynamic intramolecular interchange of phosphate protons, as well as important roles for the axial (P2) phosphate in both intramolecular and intermolecular hydrogen bonding interactions.

2.
J Phys Chem B ; 126(40): 8102-8111, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36171735

RESUMO

This study exploits higher-order micellar transition ranging from ellipsoidal to rodlike to wormlike induced by 1-octanol (C8OH) in an aqueous solution of cetyltrimethylammonium bromide (CTAB), characterizing phase behavior, rheology, and small-angle neutron scattering (SANS). The phase diagram for the ternary system CTAB-C8OH-water was constructed, which depicted the varied solution behavior. Such performance was further inferred from the rheology study (oscillatory-shear frequency sweep (ω) and viscosity (η)) that displayed an interesting solution behavior of CTAB solutions as a function of C8OH. It was observed that at low C8OH concentrations, the solutions appeared viscous/viscoelastic fluids that changed to an elastic gel with an infinite relaxation time at higher concentrations of C8OH, thereby confirming the existence of distinct micelle morphologies. Small-angle neutron scattering (SANS) provided various micellar parameters such as aggregation numbers (Nagg) and micellar size/shape. The experimental results were further validated with a computational simulation approach. The molecular dynamic (MD) study offered an insight into the molecular interactions and aggregation behavior through different analyses, including radial distribution function (RDF), radius of gyration (Rg), and solvent-accessible surface area (SASA).


Assuntos
Micelas , Tensoativos , 1-Octanol , Cetrimônio , Solventes , Água
3.
Phys Chem Chem Phys ; 24(32): 19233-19251, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35920386

RESUMO

New Cδ-H⋯O histidine hydrogen bonding interactions in various proteins are identified by neutron diffraction and computationally characterized. Neutron diffraction data shows several H-bond motifs with the Cδ-H moiety in histidine side chains, including interactions in ß-sheets and with coordinated waters, mostly with histidinium and τ-tautomers. In yellow protein, an active site histidine H-bonds via Cδ-H to a main chain carbonyl while the Cε-H bond coordinates a water molecule. Although the H-bonding ability of Cε-H bonds in histidine have been previously identified, analysis of neutron diffraction structures reveals Cε-H H-bonds in notable active site interactions: for the proximal histidine in myoglobin; a zinc-bound histidine in human carbonic anhydrase II; within the Ser-Asp-His catalytic triad of the trypsin active site; and a histidine in the proton shuttle mechanism of RNase A, in addition to more general roles of coordinating water and forming H-bonds with carbonyl groups in ß-sheets within a number of proteins. Properties of these H-bonds were computationally investigated using 5-methylimidazole and 5-methylimidazolium as models for histidine and histidinium. The π- and τ-tautomeric states of 5-methylimidazole were investigated, as both histidine tautomers are observed in the crystal structures. The newly characterized Cε-H⋯O and Cδ-H⋯O model complexes with water and acetone meet the overwhelming majority of IUPAC H-bonding criteria. 5-Methylimidazolium forms complexes that are nearly twice as strong as the respective neutral τ-5-methylimidazole and π-5-methylimidazole complexes. While the τ- and π-tautomers form Cε-H⋯O complexes of similar strength, the τ-Cδ-H⋯O interaction is approximately twice as strong as the π-Cδ-H⋯O interaction. Calculated charges on C-H (and N-H) hydrogens not participating in the H-bond are only slightly perturbed upon complex formation, implying that formation of one H-bond does not diminish the molecule's capacity for further H-bond formation at other sites in the imidazole ring. Overall, findings indicate that the Cδ-H⋯O interaction may be important for ß-sheet stability, conformation, interactions with solvent, and mechanisms in the active site. Recognition of C-H bond polarity and hydrogen bonding ability in histidine may improve molecular modeling and provide further insight into the diverse roles of histidine in protein structure-function-dynamics.


Assuntos
Histidina , Prótons , Domínio Catalítico , Histidina/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Água
4.
ACS Omega ; 7(25): 22020-22031, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785325

RESUMO

Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended time scale from femto- to nanosecond. The dielectric spectra reveal several relaxations corresponding to the orientational polarization mechanism, including the dynamics of loosely bound, tightly bound, and bulk water, as well as collective vibrational modes of protein in an aqueous environment. The dynamics of loosely bound and bulk water follow non-Arrhenius behavior; however, the dynamics of water molecules in the tightly bound layer obeys the Arrhenius-type relation. Combining molecular simulations and effective-medium approximation, we have determined the number of water molecules in the tightly bound hydration layer and studied the dynamics of protein as a function of temperature. The results provide the important impact of water on the biochemical functions of proteins.

5.
Phys Chem Chem Phys ; 23(35): 19680-19692, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525135

RESUMO

The self-assembly in aqueous solutions of three quaternary salt-based C16-type cationic surfactants with different polar head groups and identical carbon alkyl chain viz., cetylpyridinium bromide (CPB), cetyltrimethylammonium tosylate (CTAT), and cetyltriphenylphosphonium bromide (CTPPB) in the presence of 1-butanol (BuOH) and 1,4-butanediol (BTD) was investigated using tensiometry, 2D-nuclear Overhauser enhancement spectroscopy (2D-NOESY) and small angle neutron scattering (SANS) techniques. The adsorption parameters and micellar characteristics evaluated at 303.15 K distinctly showed that BuOH promotes the mixed micelle formation while BTD interfered with the micellization phenomenon. The SANS data fitted using an ellipsoid (as derived by Hayter and Penfold using the Ornstein-Zernike equation and the mean spherical approximation) and wormlike micellar models offered an insight into the micelle size/shape and aggregation number (Nagg) in the examined systems. The evaluated descriptors presented a clear indication of the morphology transition in cationic micelles as induced by the addition of the two alcohols. We also offer an investigation into the acceptable molecular interactions governing the differences in micelle morphologies, using the non-invasive 2D-NOESY technique and molecular modeling. The experimental observations elucidated from computational simulation add novelty to this work. Giving an account to the structural complexity in the three cationic surfactants, the molecular dynamics (MD) simulation was performed for CPB micelles in an aqueous solution of alcohols that highlighted the micelle solvation and structural transition, which is further complemented in terms of critical packing parameter (PP) for the examined systems.

6.
Langmuir ; 37(15): 4611-4621, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33843215

RESUMO

In this work, we characterize the micellization and morphology transition induced in aqueous cetyltrimethylammonium bromide (CTAB) solution by the addition of the antioxidant propyl gallate (PG) using tensiometry, rheology, and small-angle neutron scattering (SANS) techniques combined with the molecular dynamics (MD) simulation approach. The adsorption of CTAB at the air-water interface in the presence of varying [PG] revealed a progressive decrease in the critical micelle concentration (CMC), while the changes in different interfacial parameters indicated enhancement of the hydrophobicity induced by PG in the CTAB micellar system. The dynamic rheology behavior indicated an increase in the flow viscosity (η) as a function of [PG]. Moreover, the rheological components (storage modulus, G', and loss modulus, G″) depicted the viscoelastic features. SANS measurements depicted the existence of ellipsoidal micelles with varying sizes and aggregation number (Nagg) as a function of [PG] and temperature. Computational simulation performed using density functional theory (DFT) calculations and molecular dynamics (MD) provided an insight into the atomic composition of the examined system. The molecular electrostatic potential (MEP) analysis depicted a close proximity of CTAB, i.e., emphasized favorable interactions between the quaternary nitrogen of CTAB and the hydroxyl group of the PG monomer, further validated by the two-dimensional nuclear Overhauser enhancement spectroscopy (2D-NOESY), which showed the penetration of PG inside the CTAB micelles. In addition, various dynamic properties, viz., the radial distribution function (RDF), the radius of gyration (Rg), and solvent-accessible surface area (SASA), showed a significant microstructural evolution of the ellipsoidal micelles in the examined CTAB-PG system, where the changes in the micellar morphology with a more elongated hydrophobic chain and the increased Rg and SASA values indicated the notable intercalation of PG in the CTAB micelles.


Assuntos
Compostos de Cetrimônio , Micelas , Antioxidantes , Cátions , Cetrimônio , Tensoativos
7.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430436

RESUMO

YqhD, an E. coli alcohol/aldehyde oxidoreductase, is an enzyme able to produce valuable bio-renewable fuels and fine chemicals from a broad range of starting materials. Herein, we report the first computational solution-phase structure-dynamics analysis of YqhD, shedding light on the effect of oxidized and reduced NADP/H cofactor binding on the conformational dynamics of the biocatalyst using molecular dynamics (MD) simulations. The cofactor oxidation states mainly influence the interdomain cleft region conformations of the YqhD monomers, involved in intricate cofactor binding and release. The ensemble of NADPH-bound monomers has a narrower average interdomain space resulting in more hydrogen bonds and rigid cofactor binding. NADP-bound YqhD fluctuates between open and closed conformations, while it was observed that NADPH-bound YqhD had slower opening/closing dynamics of the cofactor-binding cleft. In the light of enzyme kinetics and structural data, simulation findings have led us to postulate that the frequently sampled open conformation of the cofactor binding cleft with NADP leads to the more facile release of NADP while increased closed conformation sampling during NADPH binding enhances cofactor binding affinity and the aldehyde reductase activity of the enzyme.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , NADP/química , NADP/metabolismo , Sítios de Ligação , Ligação de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato
8.
J Mater Chem B ; 9(3): 536-566, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33289777

RESUMO

Biomolecules have been thoroughly investigated in a multitude of solvents historically in order to accentuate or modulate their superlative properties in an array of applications. Ionic liquids have been extensively explored over the last two decades as potential replacements for traditional organic solvents, however, they are sometimes associated with a number of limitations primarily related to cost, convenience, accessibility, and/or sustainability. One potential solvent which is gaining considerable traction in recent years is the so-called deep eutectic solvent which holds a number of striking advantages, including biodegradability, inherently low toxicity, and a facile, low-cost, and solventless preparation from widely available natural feedstocks. In this review, we highlight recent progress and insights into biomolecular behavior within deep eutectic solvent-containing systems, including discussions of their demonstrated utility and prospects for the biostabilization of proteins and nucleic acids, free enzyme and whole-cell biocatalysis, various extraction processes (e.g., aqueous biphasic systems, nanosupported separations), drug solubilization, lignocellulose biomass treatment, and targeted therapeutic drug delivery. All indications point to the likelihood that these emerging solvents have the capacity to satisfy the requirements of environmental responsibility while unlocking biomolecular proficiency in established biomedical and biotechnological pursuits as well as a number of academic and industrial ventures not yet explored.


Assuntos
Materiais Biocompatíveis/química , Líquidos Iônicos/química , Tamanho da Partícula , Solventes/química , Propriedades de Superfície
9.
J Chem Inf Model ; 59(5): 2407-2422, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30865440

RESUMO

The solvation layer surrounding a protein is clearly an intrinsic part of protein structure-dynamics-function, and our understanding of how the hydration dynamics influences protein function is emerging. We have recently reported simulations indicating a correlation between regional hydration dynamics and the structure of the solvation layer around different regions of the enzyme Candida antarctica lipase B, wherein the radial distribution function (RDF) was used to calculate the pairwise entropy, providing a link between dynamics (diffusion) and thermodynamics (excess entropy) known as Rosenfeld scaling. Regions with higher RDF values/peaks in the hydration layer (the first peak, within 6 Å of the protein surface) have faster diffusion in the hydration layer. The finding thus hinted at a handle for rapid evaluation of hydration dynamics at different regions on the protein surface in molecular dynamics simulations. Such an approach may move the analysis of hydration dynamics from a specialized venture to routine analysis, enabling an informatics approach to evaluate the role of hydration dynamics in biomolecular function. This paper first confirms that the correlation between regional diffusive dynamics and hydration layer structure (via water center of mass around protein side-chain atom RDF) is observed as a general relationship across a set of proteins. Second, it seeks to devise an approach for rapid analysis of hydration dynamics, determining the minimum amount of information and computational effort required to get a reliable value of hydration dynamics from structural data in MD simulations based on the protein-water RDF. A linear regression model using the integral of the hydration layer in the water-protein RDF was found to provide statistically equivalent apparent diffusion coefficients at the 95% confidence level for a set of 92 regions within five different proteins. In summary, RDF analysis of 10 ns of data after simulation convergence is sufficient to accurately map regions of fast and slow hydration dynamics around a protein surface. Additionally, it is anticipated that a quick look at protein-water RDFs, comparing peak heights, will be useful to provide a qualitative ranking of regions of faster and slower hydration dynamics at the protein surface for rapid analysis when investigating the role of solvent dynamics in protein function.


Assuntos
Proteínas Fúngicas/química , Lipase/química , Solventes/química , Água/química , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
10.
Front Mol Biosci ; 5: 65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057902

RESUMO

Solvation is critical for protein structural dynamics. Spectroscopic studies have indicated relationships between protein and solvent dynamics, and rates of gas binding to heme proteins in aqueous solution were previously observed to depend inversely on solution viscosity. In this work, the solvent-compatible enzyme Candida antarctica lipase B, which functions in aqueous and organic solvents, was modeled using molecular dynamics simulations. Data was obtained for the enzyme in acetonitrile, cyclohexane, n-butanol, and tert-butanol, in addition to water. Protein dynamics and solvation shell dynamics are characterized regionally: for each α-helix, ß-sheet, and loop or connector region. Correlations are seen between solvent mobility and protein flexibility. So, does local viscosity explain the relationship between protein structural dynamics and solvation layer dynamics? Halle and Davidovic presented a cogent analysis of data describing the global hydrodynamics of a protein (tumbling in solution) that fits a model in which the protein's interfacial viscosity is higher than that of bulk water's, due to retarded water dynamics in the hydration layer (measured in NMR τ2 reorientation times). Numerous experiments have shown coupling between protein and solvation layer dynamics in site-specific measurements. Our data provides spatially-resolved characterization of solvent shell dynamics, showing correlations between regional solvation layer dynamics and protein dynamics in both aqueous and organic solvents. Correlations between protein flexibility and inverse solvent viscosity (1/η) are considered across several protein regions and for a rather disparate collection of solvents. It is seen that the correlation is consistently higher when local solvent shell dynamics are considered, rather than bulk viscosity. Protein flexibility is seen to correlate best with either the local interfacial viscosity or the ratio of the mobility of an organic solvent in a regional solvation layer relative to hydration dynamics around the same region. Results provide insight into the function of aqueous proteins, while also suggesting a framework for interpreting and predicting enzyme structural dynamics in non-aqueous solvents, based on the mobility of solvents within the solvation layer. We suggest that Kramers' theory may be used in future work to model protein conformational transitions in different solvents by incorporating local viscosity effects.

11.
Phys Chem Chem Phys ; 20(21): 14765-14777, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29780979

RESUMO

The enzyme Candida Antarctica lipase B (CALB) serves here as a model for understanding connections among hydration layer dynamics, solvation shell structure, and protein surface structure. The structure and dynamics of water molecules in the hydration layer were characterized for regions of the CALB surface, divided around each α-helix, ß-sheet, and loop structure. Heterogeneous hydration dynamics were observed around the surface of the enzyme, in line with spectroscopic observations of other proteins. Regional differences in the structure of the biomolecular hydration layer were found to be concomitant with variations in dynamics. In particular, it was seen that regions of higher density exhibit faster water dynamics. This is analogous to the behavior of bulk water, where dynamics (diffusion coefficients) are connected to water structure (density and tetrahedrality) by excess (or pair) entropy, detailed in the Rosenfeld scaling relationship. Additionally, effects of protein surface topology and hydrophobicity on water structure and dynamics were evaluated using multiregression analysis, showing that topology has a somewhat larger effect on hydration layer structure-dynamics. Concave and hydrophobic protein surfaces favor a less dense and more tetrahedral solvation layer, akin to a more ice-like structure, with slower dynamics. Results show that pairwise entropies of local hydration layers, calculated from regional radial distribution functions, scale logarithmically with local hydration dynamics. Thus, the Rosenfeld relationship describes the heterogeneous structure-dynamics of the hydration layer around the enzyme CALB. These findings raise the question of whether this may be a general principle for understanding the structure-dynamics of biomolecular solvation.


Assuntos
Entropia , Proteínas Fúngicas/química , Lipase/química , Simulação de Dinâmica Molecular , Água/química , Sequência de Aminoácidos , Aminoácidos/química , Sítios de Ligação , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligação Proteica , Conformação Proteica , Propriedades de Superfície
12.
J Phys Chem B ; 122(24): 6341-6350, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29791154

RESUMO

The low-frequency collective vibrational modes in proteins as well as the protein-water interface have been suggested as dominant factors controlling the efficiency of biochemical reactions and biological energy transport. It is thus crucial to uncover the mystery of the hydration structure and dynamics as well as their coupling to collective motions of proteins in aqueous solutions. Here, we report dielectric properties of aqueous bovine serum albumin protein solutions as a model system using an extremely sensitive dielectric spectrometer with frequencies spanning from megahertz to terahertz. The dielectric relaxation spectra reveal several polarization mechanisms at the molecular level with different time constants and dielectric strengths, reflecting the complexity of protein-water interactions. Combining the effective-medium approximation and molecular dynamics simulations, we have determined collective vibrational modes at terahertz frequencies and the number of water molecules in the tightly bound and loosely bound hydration layers. High-precision measurements of the number of hydration water molecules indicate that the dynamical influence of proteins extends beyond the first solvation layer, to around 7 Å distance from the protein surface, with the largest slowdown arising from water molecules directly hydrogen-bonded to the protein. Our results reveal critical information of protein dynamics and protein-water interfaces, which determine biochemical functions and reactivity of proteins.


Assuntos
Espectroscopia Dielétrica , Soroalbumina Bovina/química , Animais , Bovinos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Soroalbumina Bovina/metabolismo , Água/química
13.
J Comput Chem ; 38(30): 2605-2617, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28833293

RESUMO

The ability of electronic structure methods (11 density functionals, HF, and MP2 calculations; two basis sets and two solvation models) to accurately calculate the 19 F chemical shifts of 31 structures of fluorinated amino acids and analogues with known experimental 19 F NMR spectra has been evaluated. For this task, BHandHLYP, ωB97X, and Hartree-Fock with scaling factors (provided within) are most accurate. Additionally, the accuracy of methods to calculate relative changes in fluorine shielding across 23 sets of structural variants, such as zwitterionic amino acids versus side chains only, was also determined. This latter criterion may be a better indicator of reliable methods for the ultimate goal of assigning and interpreting chemical shifts of fluorinated amino acids in proteins. It was found that MP2 and M062X calculations most accurately assess changes in shielding among analogues. These results serve as a guide for computational developments to calculate 19 F chemical shifts in biomolecular environments. © 2017 Wiley Periodicals, Inc.


Assuntos
Aminoácidos/química , Modelos Moleculares , Proteínas/química , Flúor , Halogenação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Teoria Quântica
14.
Sci Rep ; 7: 42651, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198426

RESUMO

Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.


Assuntos
Corantes Fluorescentes/química , Histidina/análogos & derivados , Histidina/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Prótons , Análise Espectral
15.
J Phys Chem B ; 120(41): 10757-10767, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27661395

RESUMO

Gigahertz-to-terahertz spectroscopy of macromolecules in aqueous environments provides an important approach for identifying their global and transient molecular structures, as well as directly assessing hydrogen-bonding. We report dielectric properties of zwitterionic dodecylphosphocholine (DPC) micelles in aqueous solutions over a wide frequency range, from 50 MHz to 1.12 THz. The dielectric relaxation spectra reveal different polarization mechanisms at the molecular level, reflecting the complexity of DPC micelle-water interactions. We have made a deconvolution of the spectra into different components and combined them with the effective-medium approximation to separate delicate processes of micelles in water. Our measurements demonstrate reorientational motion of the DPC surfactant head groups within the micelles, and two levels of hydration water shells, including tightly and loosely bound hydration water layers. From the dielectric strength of bulk water in DPC solutions, we found that the number of waters in hydration shells is approximately constant at 950 ± 45 water molecules per micelle in DPC concentrations up to 400 mM, and it decreases after that. At terahertz frequencies, employing the effective-medium approximation, we estimate that each DPC micelle is surrounded by a tightly bound layer of 310 ± 45 water molecules that behave as if they are an integral part of the micelle. Combined with molecular dynamics simulations, we determine that tightly bound waters are directly hydrogen-bonded to oxygens of DPC, while loosely bound waters reside within 4 Å of micellar atoms. The dielectric response of DPC micelles at terahertz frequencies yields, for the first time, experimental information regarding the largest scale, lowest frequency collective motions in micelles. DPC micelles are a relatively simple biologically relevant system, and this work paves the way for more insight into future studies of hydration and dynamics of biomolecular systems with gigahertz-to-terahertz spectroscopy.

16.
Mol Simul ; 42(12): 1001-1013, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27403032

RESUMO

The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results.

17.
Chem Phys Lett ; 666: 58-61, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28603294

RESUMO

Ribonuclease A is the oldest model for studying enzymatic mechanisms, yet questions remain about proton transfer within the active site. Seminal work by Jackson et al. (Science, 1994) labeled Ribonuclease A with 4-fluorohistidine, concluding that active-site histidines act as general acids and bases. Calculations of 4-fluorohistidine indicate that the π-tautomer is predominant in all simulated environments (by ~17 kJ/mol), strongly suggesting that fluoro-labeled ribonuclease A functions with His119 in π-tautomer. The tautomeric form of His119 during proton transfer and tautomerism as a putative mechanistic step in wild-type RNase A remain open questions and should be considered in future mechanistic studies.

18.
Phys Chem Chem Phys ; 17(45): 30606-12, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26524669

RESUMO

Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.


Assuntos
Flúor/química , Histidina/análogos & derivados , Elétrons , Histidina/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
19.
J Chem Theory Comput ; 11(11): 5415-25, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26574330

RESUMO

Cationic surfactants are widely used in biological and industrial processes. Notably, surfactants with pyridinium salts, such as cetylpyridinium bromide (CPB), have diverse applications. The cetylpyridium cation has a quaternary nitrogen in the aromatic heterocyclic ring of the headgroup and 16 carbons in the hydrocarbon tail. At present and in the past, it has been widely used in germicides. Recently, several interesting applications of CPB have been explored, including its use in protein folding, polymerization, enzyme studies, and gene delivery as well as in pharmaceuticals as a drug delivery tool. A molecular-level understanding of CPB and its micelle in solution can enhance its development in such applications. Herein, we have proposed the first united-atom force field for CPB that yields stable micellar aggregates in molecular dynamics (MD) simulations. The force field is validated through classical MD simulations of the CPB monomer in pure water and 1-octanol as well as in an aqueous CPB micelle. We have performed principal component analysis (PCA) and calculated the translational and rotational diffusion coefficients, spatial distribution of solvent, counterion distribution, and rotational correlation time of CPB molecule in solutions and in micelle, comparing these data to previous experimental and theoretical results for a strong validation of the force field. PCA confirms that the pyridinium ring remains planar, whereas the movement of the hydrophobic tail region leads to conformational changes during the simulations. The collective modes of the pyridinum ring were identical for CPB molecule in solution and micelle, but conformational dynamics of the CPB tail were restricted in the micelle relative to motions in water and 1-octanol. Using this force field, a spherical CPB micelle was shown to be stable throughout the course of simulation, and its solvation and structural properties are characterized.

20.
J Phys Chem B ; 115(42): 12173-8, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21916487

RESUMO

The mechanism of the OH bond reorientation in liquid methanol and ethanol is examined. It is found that the extended jump model, recently developed for water, describes the OH reorientation in these liquids. The slower reorientational dynamics in these alcohols compared to water can be explained by two key factors. The alkyl groups on the alcohol molecules exclude potential partners for hydrogen bonding exchanges, an effect that grows with the size of the alkyl chain. This increases the importance of the reorientation of intact hydrogen bonds, which also slows with increasing size of the alcohol and becomes the dominant reorientation pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...