Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurophysiol ; 106(2): 801-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21593391

RESUMO

Tobacco use is a major public health problem, and although many smokers report that they want to quit, only a small percentage succeed. Side effects associated with nicotine withdrawal, including depression, anxiety, and restlessness, certainly contribute to the low success rate. The dorsal raphe nucleus (DRN) is a serotonergic center with many functions, including control of mood and emotional state. We investigated the effect of nicotine on DRN neurons that project to the nucleus accumbens (NAc), an area involved in reward-related behaviors. Using a retrograde labeling method, we found that 75% of DRN-NAc projection neurons are serotonergic. In coronal slices that include the DRN, whole cell recordings were conducted on neurons identified by fluorescent backlabeling from NAc or randomly selected within the nucleus. Nicotine increased action potential firing rates in a subset of DRN neurons. Voltage-clamp recording revealed nicotinic acetylcholine receptor (nAChR)-mediated inward currents that contribute to the nicotine-induced excitation. Nicotinic receptors also indirectly affect excitability by modulating synaptic inputs to these neurons. Nicotine enhanced excitatory glutamatergic inputs to a subset of DRN-NAc projection neurons, while inhibitory γ-aminobutyric acid (GABA)ergic inputs were modulated either positively or negatively in a subset of these neurons. The net effect of nAChR activation is enhancement of serotonergic output from DRN to the NAc, which may contribute to the effects of nicotine on mood and affect.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Nicotina/farmacologia , Núcleo Accumbens/fisiologia , Núcleos da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/efeitos dos fármacos
2.
J Endocrinol ; 186(1): 241-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16002553

RESUMO

The overall body size of vertebrates is primarily determined by longitudinal bone growth at the growth plate. With age, the growth plate undergoes programmed senescence, causing longitudinal bone growth to slow and eventually cease. Indirect evidence suggests that growth plate senescence occurs because stem-like cells in the growth plate resting zone have a finite proliferative capacity that is gradually exhausted. Similar limits on replication have been observed when many types of animal cells are placed in cell culture, an effect known as the Hayflick phenomenon. However, we found that the number of population doublings of rabbit resting zone chondrocytes in culture did not depend on the age of the animal from which the cells were harvested, suggesting that the mechanisms limiting replicative capacity of growth plate chondrocytes in vivo are distinct from those in vitro. We also observed that the level of DNA methylation in resting zone chondrocytes decreased with age in vivo. This loss of methylation appeared to occur specifically with the slow proliferation of resting zone chondrocytes in vivo and was not observed with the rapid proliferation of proliferative zone chondrocytes in vivo (i.e. the level of DNA methylation did not change from the resting zone to the hypertrophic zone), with proliferation of chondrocytes in vitro, or with growth of the liver in vivo. Thus, the overall level of DNA methylation decreases during growth plate senescence. This finding is consistent with the hypothesis that the mechanism limiting replication of growth plate chondrocytes in vivo involves loss of DNA methylation and, thus, loss of DNA methylation might be a fundamental biological mechanism that limits longitudinal bone growth in mammals, thereby determining the overall adult size of the organism.


Assuntos
Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Metilação de DNA , Lâmina de Crescimento/citologia , Envelhecimento , Fosfatase Alcalina/análise , Animais , Proliferação de Células , Células Cultivadas , Senescência Celular , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Glicosaminoglicanos/análise , Lâmina de Crescimento/metabolismo , Histocitoquímica/métodos , Fígado/metabolismo , Masculino , Coelhos , beta-Galactosidase/análise
3.
Horm Res ; 63(3): 125-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15795509

RESUMO

BACKGROUND AND AIM: Telomeres are hexameric repeat sequences that flank eukaryotic chromosomes. The telomere hypothesis of cellular aging proposes that replication of normal somatic cells leads to progressive telomere shortening which induces replicative senescence. Previous studies suggest that growth plate chondrocytes have a finite proliferative capacity in vivo. We therefore hypothesized that telomere shortening in resting zone chondrocytes leads to replicative senescence. METHOD: To test this hypothesis we compared the telomere restriction fragment (TRF) length of Mus casteneus at 1, 4, 8, and 56 weeks of age. RESULTS AND CONCLUSIONS: We found that TRF length did not diminish measurably with age, suggesting that telomere shortening in resting zone chondrocytes is not the mechanism that limits proliferation of growth plate chondrocytes in vivo.


Assuntos
Envelhecimento/fisiologia , Condrócitos/fisiologia , Lâmina de Crescimento/fisiologia , Telômero/fisiologia , Animais , Southern Blotting , Divisão Celular/fisiologia , Condrócitos/citologia , Lâmina de Crescimento/citologia , Camundongos
4.
Brain Res ; 1000(1-2): 110-22, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-15053959

RESUMO

Since the metabolic activity of neural cells is accompanied by heat release, brain temperature monitoring provides insight into behavior-associated changes in neural activity. In the present study, local temperatures were continuously recorded in several brain structures (nucleus accumbens, medial-preoptic hypothalamus and hippocampus) and a non-locomotor head muscle (musculus temporalis) in a receptive female rat during sexually arousing stimulation and subsequent copulatory behavior with an experienced male. Placement of the male into a neighboring compartment increased the female's temperature (approximately 0.8 degrees C) and additional, transient increases (approximately 0.2 degrees C) occurred when the rats were allowed to see and smell each other through a transparent barrier. Temperatures gradually increased further as the male repeatedly mounted and achieved intromissions, peaked 2-3 min after male's ejaculation (0.2-0.4 degrees C), and abruptly dropped until the male initiated a new copulatory cycle. Similar biphasic fluctuations accompanied subsequent copulatory cycles. Although both arousal-related temperature increases and biphasic fluctuations associated with copulatory cycles were evident in each recording location, brain sites showed consistently faster and stronger increases than the muscle, suggesting metabolic brain activation as the primary source of brain temperature fluctuations and a force behind associated changes in brain temperature. Robust brain hyperthermia and the generally similar pattern of phasic temperature fluctuations associated with individual events of sexual interaction found in males and females suggest widespread neural activation (motivational arousal) as a driving force underlying this cooperative motivated behavior in animals of both sexes. Females, however, showed different temperature changes in association with the initial (first mount or intromission) and final (ejaculation) events of each copulatory cycle, suggesting sex-specific differences in neural activity associated with the initiation and regulation of sexual behavior.


Assuntos
Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Febre , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Copulação/fisiologia , Feminino , Masculino , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...