Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745556

RESUMO

Veterinarians who have conducted numerous investigations of African swine fever outbreaks in pig farms in various European countries over the years shared their experiences during a workshop in Germany in early 2020. One focus was on the so-called "anecdotal information" obtained from farmers, farm workers or other lay people during the outbreak investigations. Discussions revolved around how to correctly interpret and classify such information and how the subjective character of the statements can influence follow-up examinations. The statements of the lay persons were grouped into three categories according to their plausibility: (i) statements that were plausible and prompted further investigation, (ii) statements that were not plausible and could therefore be ignored, and (iii) statements that were rather implausible but should not be ignored completely. The easiest to deal with were statements that could be classified without doubt as important and very plausible and statements that were not plausible at all. Particularly difficult to assess were statements that had a certain plausibility and could not be immediately dismissed out of hand. We aim to show that during outbreak investigations, one is confronted with human subjective stories that are difficult to interpret but still important to understand the overall picture. Here, we present and briefly discuss an arbitrary selection of reports made by lay persons during outbreak investigations.

2.
EFSA J ; 20(5): e07290, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35515335

RESUMO

This report provides a descriptive analysis of the African swine fever (ASF) Genotype II epidemic in the affected Member States in the EU and two neighbouring countries for the period from 1 September 2020 to 31 August 2021. ASF continued to spread in wild boar in the EU, it entered Germany in September 2020, while Belgium became free from ASF in October 2020. No ASF outbreaks in domestic pigs nor cases in wild boar have been reported in Greece since February 2020. In the Baltic States, overall, there has been a declining trend in proportions of polymerase chain reaction (PCR)-positive samples from wild boar carcasses in the last few years. In the other countries, the proportions of PCR-positive wild boar carcasses remained high, indicating continuing spread of the disease. A systematic literature review revealed that the risk factors most frequently significantly associated with ASF in domestic pigs were pig density, low levels of biosecurity and socio-economic factors. For wild boar, most significant risk factors were related to habitat, socio-economic factors and wild boar management. The effectiveness of different control options in the so-named white zones, areas where wild boar densities have been drastically reduced to avoid further spread of ASF after a new introduction, was assessed with a stochastic model. Important findings were that establishing a white zone is much more challenging when the area of ASF incursion is adjacent to an area where limited control measures are in place. Very stringent wild boar population reduction measures in the white zone are key to success. The white zone needs to be far enough away from the affected core area so that the population can be reduced in time before the disease arrives and the timing of this will depend on the wild boar density and the required population reduction target in the white zone. Finally, establishing a proactive white zone along the demarcation line of an affected area requires higher culling efforts, but has a higher chance of success to stop the spread of the disease than establishing reactive white zones after the disease has already entered in the area.

3.
EFSA J ; 19(5): e06572, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976715

RESUMO

An update on the African swine fever (ASF) situation in the 10 affected Member States (MS) in the EU and in two neighbouring countries from the 1 September 2019 until the 31 August 2020 is provided. The dynamics of the proportions of PCR- and ELISA-positive samples since the first ASF detection in the country were provided and seasonal patterns were investigated. The impact of the ASF epidemic on the annual numbers of hunted wild boar in each affected MS was investigated. To evaluate differences in the extent of spread of ASF in the wild boar populations, the number of notifications that could be classified as secondary cases to a single source was calculated for each affected MS and compared for the earliest and latest year of the epidemic in the country. To evaluate possible risk factors for the occurrence of ASFV in wild boar or domestic pigs, a literature review was performed. Risk factors for the occurrence of ASF in wild boar in Romanian hunting grounds in 2019 were identified with a generalised linear model. The probability to find at least one PCR-confirmed ASF case in wild boar in a hunting ground in Romania was driven by environmental factors, wild boar abundance and the density of backyard pigs in the hunting ground area, while hunting-related variables were not retained in the final model. Finally, measures implemented in white zones (ASF-free zones that are geographically adjacent to an area where ASF is present in wild boar) to prevent further spread of ASF were analysed with a spatially, explicit stochastic individual-based model. To be effective, the wild boar population in the white zone would need to be drastically reduced before ASF arrives at the zone and it must be wide enough. To achieve the necessary pre-emptive culling targets of wild boar in the white zone, at the start of the establishment, the white zone should be placed sufficiently far from the affected area, considering the speed of the natural spread of the disease. This spread is faster in denser wild boar populations. After a focal ASF introduction, the white zone is always close to the infection hence pre-emptive culling measures in the white zone must be completed in short term, i.e. in a few months.

4.
Prev Vet Med ; 181: 104595, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30553537

RESUMO

Despite the wide use of the live attenuated Neethling lumpy skin disease (LSD) vaccine, only limited data existed on its efficacy and effectiveness prior to the large LSD epidemic in the Balkans, which took place during 2016-2017. In addition, analysis of risk factors for the disease was hardly performed with proper control for vaccination effects and potential differences in exposure to the virus. Data from the LSD epidemics in six Balkan countries (Bulgaria, Greece, Serbia, Montenegro, Former Yugoslav Republic of Macedonia (FYROM) and Albania) affected during 2016 were analyzed to determine vaccine effectiveness (VE) and risk factors for LSD infection at the farm level. Vaccination was performed along the occurrence of the epidemics and thus vaccination status of some of the farms changed during the epidemic. To allow for this, left truncated and right censored survival analysis was used in a mixed effects Cox proportional hazard regression model to calculate VE and risk factors for LSD. The results indicated of an average VE of 79.8% (95% CI: 73.2-84.7)) in the six countries, with the lowest VE of 62.5% documented in Albania and up to VE of more than 97% as documented in Bulgaria and Serbia. Analysis of time from vaccination to development of protective immunity showed that VE mostly developed during the first 14 days after vaccination. Data from Greece showed that the vaccination adjusted hazard ratio for LSD was 5.7 higher in grazing farms compared to non-grazing farms. However, due to a difference in geographical location of grazing and non-grazing farms and higher vaccination rate in non-grazing farms, this effect can be at least partly attributed to indirect protection due to herd immunity provided by surrounding vaccinated farms.


Assuntos
Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/imunologia , Vacinas Virais/administração & dosagem , Albânia , Animais , Bulgária , Bovinos , Grécia , Abrigo para Animais , Montenegro , República da Macedônia do Norte , Fatores de Risco , Sérvia , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem
5.
Zoonoses Public Health ; 66(7): 874-878, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493311

RESUMO

We estimated that more than 11,000 people were exposed to highly pathogenic avian influenza viruses in EU/EEA countries over the outbreak period October 2016-September 2018 by cross-linking data submitted by Member States to European Food Safety Authority and EMPRES-i. A stronger framework for collecting human exposure data is required.


Assuntos
Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Animais , Animais Selvagens/virologia , Aves/virologia , União Europeia , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia
6.
Transbound Emerg Dis ; 65(6): 1680-1688, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29992738

RESUMO

Lumpy skin disease (LSD) is an emerging viral disease that was detected for the first time in the Balkan Peninsula in Greece in 2015. In April 2016, there was a reoccurrence in Greece and the spread of the disease for the first time into Bulgaria, the Former Yugoslav Republic of Macedonia, Serbia, Kosovo, Albania and Montenegro. The veterinary services of the countries responded with different strategies to control the disease, mostly based on mass vaccination campaigns and diverse stamping out approaches. During 2017, the epidemic was mostly controlled except for outbreaks reported in Albania, Greece and the Former Yugoslav Republic of Macedonia. The study aims to quantify the cost of disease and control measures in three selected Balkan countries, that is, Albania, Bulgaria and the Former Yugoslav Republic of Macedonia, which were differently affected by the disease, had different animal production structures and implemented different control strategies. The total cost for the three countries was 20.9 million Euro (EUR 20.9 m), mostly incurred in 2016 (EUR 16.6 m), when the disease was spreading throughout the Balkan region. In 2017 (data until October), the cost was EUR 4.0 m, mainly due to vaccination costs. Bulgaria was the country with the highest total cost at EUR 8.6 m, followed by the Former Yugoslav Republic of Macedonia (EUR 6.7 m) and Albania (EUR 5.3 m). According to our data, the average cost per affected herd in 2016 was EUR 869, EUR 6,994 and EUR 3,071 in Albania, Bulgaria and the Former Yugoslav Republic of Macedonia, respectively. The cost per animal in the affected herds was EUR 539, 147 and 258, respectively. The results from this study are useful to understand the cost of LSD outbreaks in the region, which might contribute to improve the surveillance and control of the disease.


Assuntos
Doenças Transmissíveis Emergentes/economia , Efeitos Psicossociais da Doença , Análise Custo-Benefício , Surtos de Doenças/economia , Surtos de Doenças/veterinária , Doença Nodular Cutânea/economia , Albânia/epidemiologia , Criação de Animais Domésticos/economia , Animais , Bulgária/epidemiologia , Bovinos , Humanos , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/prevenção & controle , Doença Nodular Cutânea/virologia , República da Macedônia do Norte/epidemiologia , Vacinação/veterinária
7.
EFSA J ; 16(11): e05494, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32625771

RESUMO

This update on the African swine fever (ASF) outbreaks in the EU demonstrated that out of all tested wild boar found dead, the proportion of positive samples peaked in winter and summer. For domestic pigs only, a summer peak was evident. Despite the existence of several plausible factors that could result in the observed seasonality, there is no evidence to prove causality. Wild boar density was the most influential risk factor for the occurrence of ASF in wild boar. In the vast majority of introductions in domestic pig holdings, direct contact with infected domestic pigs or wild boar was excluded as the route of introduction. The implementation of emergency measures in the wild boar management zones following a focal ASF introduction was evaluated. As a sole control strategy, intensive hunting around the buffer area might not always be sufficient to eradicate ASF. However, the probability of eradication success is increased after adding quick and safe carcass removal. A wider buffer area leads to a higher success probability; however it implies a larger intensive hunting area and the need for more animals to be hunted. If carcass removal and intensive hunting are effectively implemented, fencing is more useful for delineating zones, rather than adding substantially to control efficacy. However, segments of fencing will be particularly useful in those areas where carcass removal or intensive hunting is difficult to implement. It was not possible to demonstrate an effect of natural barriers on ASF spread. Human-mediated translocation may override any effect of natural barriers. Recommendations for ASF control in four different epidemiological scenarios are presented.

8.
EFSA J ; 16(12): e05573, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32625795

RESUMO

Between 16 August and 15 November 2018, 14 highly pathogenic avian influenza (HPAI) A(H5N8) outbreaks in poultry establishments in Bulgaria and seven HPAI A(H5N6) outbreaks, one in captive birds in Germany and six in wild birds in Denmark and the Netherlands were reported in the European Union (EU). No human infection due to HPAI A(H5N8) and A(H5N6) viruses have been reported in Europe so far. Seroconversion of people exposed during outbreaks in Russia has been reported in one study. Although the risk of zoonotic transmission to the general public in Europe is considered to be very low, appropriate personal protection measures of people exposed will reduce any potential risk. Genetic clustering of the viruses isolated from poultry in Bulgaria suggests three separate introductions in 2016 and a continuing circulation and transmission of these viruses within domestic ducks. Recent data from Bulgaria provides further indication that the sensitivity of passive surveillance of HPAI A(H5N8) in domestic ducks may be significantly compromised. Increased vigilance is needed especially during the periods of cold spells in winter when aggregations of wild birds and their movements towards areas with more favourable weather conditions may be encouraged. Two HPAI outbreaks in poultry were reported during this period from western Russia. Low numbers of HPAI outbreaks were observed in Africa and Asia, no HPAI cases were detected in wild birds in the time period relevant for this report. Although a few HPAI outbreaks were reported in Africa and Asia during the reporting period, the probability of HPAI virus introductions from non-EU countries via wild birds particularly via the north-eastern route from Russia is increasing, as the fall migration of wild birds from breeding and moulting sites to the wintering sites continues. Furthermore, the lower temperatures and ultraviolet radiation in winter can facilitate the environmental survival of any potential AI viruses introduced to Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...