Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 255: 12-26, 2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28366646

RESUMO

A rationally-designed library of ternary siRNA polyplexes was developed and screened for gene silencing efficacy in vitro and in vivo with the goal of overcoming both cell-level and systemic delivery barriers. [2-(dimethylamino)ethyl methacrylate] (DMAEMA) was homopolymerized or copolymerized (50mol% each) with butyl methacrylate (BMA) from a reversible addition - fragmentation chain transfer (RAFT) chain transfer agent, with and without pre-conjugation to polyethylene glycol (PEG). Both single block polymers were tested as core-forming units, and both PEGylated, diblock polymers were screened as corona-forming units. Ternary siRNA polyplexes were assembled with varied amounts and ratios of core-forming polymers to PEGylated corona-forming polymers. The impact of polymer composition/ratio, hydrophobe (BMA) placement, and surface PEGylation density was correlated to important outcomes such as polyplex size, stability, pH-dependent membrane disruptive activity, biocompatibility, and gene silencing efficiency. The lead formulation, DB4-PDB12, was optimally PEGylated not only to ensure colloidal stability (no change in size by DLS between 0 and 24h) and neutral surface charge (0.139mV) but also to maintain higher cell uptake (>90% positive cells) than the most densely PEGylated particles. The DB4-PDB12 polyplexes also incorporated BMA in both the polyplex core- and corona-forming polymers, resulting in robust endosomolysis and in vitro siRNA silencing (~85% protein level knockdown) of the model gene luciferase across multiple cell types. Further, the DB4-PDB12 polyplexes exhibited greater stability, increased blood circulation time, reduced renal clearance, increased tumor biodistribution, and greater silencing of luciferase compared to our previously-optimized, binary parent formulation following intravenous (i.v.) delivery. This polyplex library approach enabled concomitant optimization of the composition and ratio of core- and corona-forming polymers (indirectly tuning PEGylation density) and identification of a ternary nanomedicine optimized to overcome important siRNA delivery barriers in vitro and in vivo.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luciferases/genética , Camundongos , Camundongos Nus , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Distribuição Tecidual
2.
J Biomed Mater Res A ; 104(4): 917-27, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26691570

RESUMO

Hydrolytically degrading nano-polyplexes (HDG-NPs) that reverse charge through conversion of tertiary amines to carboxylic acids were investigated to improve intracellular un-packaging of siRNA and target gene silencing compared to a non-degradable analog (non-HDG-NPs). Both NP types comprised reversible addition-fragmentation chain-transfer (RAFT) synthesized diblock copolymers of a poly(ethylene glycol) (PEG) corona-forming block and a cationic block for nucleic acid packaging that incorporated butyl methacrylate (BMA) and either dimethylaminoethyl methacrylate (DMAEMA, non-HDG-NPs) or dimethylaminoethyl acrylate (DMAEA, HDG-NPs). HDG-NPs decreased significantly in size and released significantly more siRNA (∼40%) than non-HDG-NPs after 24 h in aqueous solution. While both HDG-NPs and non-HDG-NPs had comparable uptake and cytotoxicity up to 150 nM siRNA doses, HDG-NPs achieved significantly higher target gene silencing of the model gene luciferase in vitro. High resolution FRET confocal microscopy was used to monitor the intracellular un-packaging of siRNA. Non-HDG-NPs had significantly higher FRET efficiency than HDG-NPs, indicating that siRNA delivered from HDG-NPs was more fully un-packaged and therefore had improved intracellular bioavailability.


Assuntos
Metacrilatos/química , Nanoestruturas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , Aminas/química , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Transferência Ressonante de Energia de Fluorescência , Hemólise , Humanos , Hidrólise , Microscopia Confocal , Interferência de RNA
3.
J Biomed Mater Res A ; 103(9): 3107-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25641816

RESUMO

Clinical translation of siRNA therapeutics has been limited by the inability to effectively overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, to address both potency and longevity of siRNA gene silencing, pH-responsive micellar nanoparticle (NP) carriers loaded with siRNA conjugated to palmitic acid (siRNA-PA) were investigated as a combined approach to improve siRNA endosomal escape and stability. Conjugation to hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs correlated to a 2- and 11-fold decrease in gene silencing IC50 in comparison to siRNA NPs in fibroblasts and mesenchymal stem cells, respectively, for both the model gene luciferase and the therapeutically relevant gene prolyl hydroxylase domain protein 2 (PHD2) . PA conjugation also significantly increased longevity of silencing activity following a single treatment in fibroblasts. Thus, conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance the functional efficacy of siRNA in tissue regenerative and other applications.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Animais , Materiais Biocompatíveis/química , Transporte Biológico Ativo , Endossomos/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Nanopartículas/ultraestrutura , Ácido Palmítico/química , Polímeros/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética
4.
Biomacromolecules ; 16(1): 192-201, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25414930

RESUMO

A dual-targeted siRNA nanocarrier has been synthesized and validated that is selectively activated in environments where there is colocalization of two breast cancer hallmarks, elevated matrix metalloproteinase (MMP) activity and folate receptor overexpression. This siRNA nanocarrier is self-assembled from two polymers containing the same pH-responsive, endosomolytic core-forming block but varying hydrophilic, corona-forming blocks. The corona block of one polymer consists of a 2 kDa PEG attached to a terminal folic acid (FA); the second polymer contains a larger (Y-shaped, 20 kDa) PEG attached to the core block by a proximity-activated targeting (PAT), MMP7-cleavable peptide. In mixed micelle smart polymer nanoparticles (SPNs) formed from the FA- and PAT-based polymers, the proteolytically removable PEG on the PAT polymers shields nonspecific SPN interactions with cells or proteins. When the PAT element is cleaved within an MMP-rich environment, the PEG shielding is removed, exposing the underlying FA and making it accessible for folate receptor-mediated SPN uptake. Characterization of mixed micelles prepared from these two polymers revealed that uptake and siRNA knockdown bioactivity of a 50% FA/50% PAT formulation was dependent on both proteolytic activation and FA receptor engagement. MMP activation and delivery of this formulation to breast cancer cells expressing the FA receptor achieved greater than 50% protein-level knockdown of a model gene with undetectable cytotoxicity. This modular nanoparticle design represents a new paradigm in cell-selective siRNA delivery and allows for stoichiometric tuning of dual-targeting components to achieve superior targeting specificity.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Receptores de Folato com Âncoras de GPI , Técnicas de Transferência de Genes , Metaloproteinase 7 da Matriz , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Receptores de Folato com Âncoras de GPI/metabolismo , Humanos , Células MCF-7 , Metaloproteinase 7 da Matriz/metabolismo , Nanopartículas/metabolismo , RNA Interferente Pequeno/metabolismo
5.
Biomaterials ; 38: 97-107, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453977

RESUMO

A series of endosomolytic mixed micelles was synthesized from two diblock polymers, poly[ethylene glycol-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (PEG-b-pDPB) and poly[dimethylaminoethyl methacrylate-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (pD-b-pDPB), and used to determine the impact of both surface PEG density and PEG molecular weight on overcoming both intracellular and systemic siRNA delivery barriers. As expected, the percent PEG composition and PEG molecular weight in the corona had an inverse relationship with mixed micelle zeta potential and rate of cellular internalization. Although mixed micelles were internalized more slowly, they generally produced similar gene silencing bioactivity (∼ 80% or greater) in MDA-MB-231 breast cancer cells as the micelles containing no PEG (100 D/no PEG). The mechanistic explanation for the potent bioactivity of the promising 50 mol% PEG-b-DPB/50 mol% pD-b-pDPB (50 D) mixed micelle formulation, despite its relatively low rate of cellular internalization, was further investigated as a function of PEG molecular weight (5 k, 10 k, or 20 k PEG). Results indicated that, although larger molecular weight PEG decreased cellular internalization, it improved cytoplasmic bioavailability due to increased intracellular unpackaging (quantitatively measured via FRET) and endosomal release. When delivered intravenously in vivo, 50 D mixed micelles with a larger molecular weight PEG in the corona also demonstrated significantly improved blood circulation half-life (17.8 min for 20 k PEG micelles vs. 4.6 min for 5 kDa PEG micelles) and a 4-fold decrease in lung accumulation. These studies provide new mechanistic insights into the functional effects of mixed micelle-based approaches to nanocarrier surface PEGylation. Furthermore, the ideal mixed micelle formulation identified (50 D/20 k PEG) demonstrated desirable intracellular and systemic pharmacokinetics and thus has strong potential for in vivo therapeutic use.


Assuntos
Composição de Medicamentos/métodos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Polietilenoglicóis/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Frações Subcelulares/metabolismo , Animais , Difusão , Humanos , Metacrilatos/química , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Tamanho da Partícula , RNA Interferente Pequeno/sangue , Frações Subcelulares/química
7.
Bioconjug Chem ; 24(3): 398-407, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23360541

RESUMO

RNA interference (RNAi) drugs have significant therapeutic potential, but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide-co-N-(2-(pyridin-2-yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions and a second ampholytic block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization with an overall molecular weight of 22 000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 µg/mL, respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90% mRNA knockdown and 65% protein knockdown at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates demonstrate the potential utility of this carrier design for delivering therapeutic siRNA drugs.


Assuntos
Técnicas de Transferência de Genes , Micelas , Polímeros/administração & dosagem , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Eritrócitos/efeitos dos fármacos , Células HeLa , Humanos , RNA Interferente Pequeno/genética
8.
Adv Funct Mater ; 23(24): 3040-3052, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25214828

RESUMO

Small interfering RNA (siRNA) has significant potential to evolve into a new class of pharmaceutical inhibitors, but technologies that enable robust, tissue-specific intracellular delivery must be developed before effective clinical translation can be achieved. A pH-responsive, smart polymeric nanoparticle (SPN) with matrix metalloproteinase (MMP)-7-dependent proximity-activated targeting (PAT) is described here. The PAT-SPN was designed to trigger cellular uptake and cytosolic delivery of siRNA once activated by MMP-7, an enzyme whose overexpression is a hallmark of cancer initiation and progression. The PAT-SPN is composed of a corona-forming PEG block, an MMP-7-cleavable peptide, a cationic siRNA-condensing block, and a pH-responsive, endosomolytic terpolymer block that drives self-assembly and forms the PAT-SPN core. With this novel design, the PEG corona shields cellular interactions until it is cleaved in MMP-7-rich environments, shifting SPNζ-potential from +5.8 to +14.4 mV and triggering a 2.5 fold increase in carrier internalization. The PAT-SPN exhibited pH-dependent membrane disruptive behavior that enabled siRNA escape from endo-lysosomal pathways. Efficient intracellular siRNA delivery and knockdown of the model enzyme luciferase in R221A-Luc mammary tumor cellssignificantly depended on MMP-7 pre-activation. These combined data indicate that the PAT-SPN provides a promising new platform for tissue-specific, proximity-activated siRNA delivery to MMP-rich pathological environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA