Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-24580340

RESUMO

Using numerical simulations, we investigate the wave number and frequency dependent transverse current correlation function CT(k,ω) of a single-component fluid with Yukawa interaction potential, also known as the Yukawa one-component plasma. The transverse current correlation function is an important quantity because it contains the microscopic details of the viscoelastic behavior of the fluid. We show that, in the region of densities and temperatures in which shear waves do not propagate, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. As either the density is increased or the temperature decreased, the transverse current correlation function shows additional structure that the simple models fail to capture.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056407, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004879

RESUMO

The complementarity of the liquid and plasma descriptions of the classical one-component plasma is explored by studying wave number and frequency dependent dynamical quantities: the dynamical structure factor (DSF) and the dynamic local field correction (LFC). Accurate molecular dynamics (MD) simulations are used to validate and test models of the DSF and LFC. Our simulations, which span the entire fluid regime (Γ=0.1-175), show that the DSF is very well represented by a simple and well known memory function model of generalized hydrodynamics. On the other hand, the LFC, which we have computed using MD for the first time, is not well described by existing models.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046401, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181277

RESUMO

Using numerical simulations, we investigate the equilibrium dynamics of a single-component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, our results have significant applicability for both analyzing and interpreting the results of x-ray scattering data from high-power lasers and fourth-generation light sources.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(1 Pt 2): 015401, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21405737

RESUMO

We show that the hydrodynamic description can be applied to modeling the ionic response in dense plasmas for a wide range of length scales that are experimentally accessible. Using numerical simulations for the Yukawa model, we find that the maximum wave number k(max) at which the hydrodynamic description applies is independent of the coupling strength, given by k(max)λ(s)≃0.43, where λ(s) is the ionic screening length. Our results show that the hydrodynamic description can be used for interpreting x-ray scattering data from fourth generation light sources and high power lasers. In addition, our investigation sheds new light on how the domain of validity of the hydrodynamic description depends on both the microscopic properties and the thermodynamic state of fluids in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...