Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(30): 12670-12678, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37465858

RESUMO

We report carrier relaxation dynamics in semiconducting tellurium nanowires (average diameter ∼ 10 nm) using ultrafast time-resolved terahertz spectroscopy. After photoexcitation using an 800 nm pump pulse, we observed an initial increase in the THz conductivity due to the absorption of THz radiation by photoexcited carriers. The time evolution of the differential conductivity (Δσ(τpp) = σpump on(τpp) - σpump off) shows a bi-exponential relaxation with the initial fast decay time scale of τ1 ∼ 25 ps followed by a longer relaxation time constant of τ2 ∼ 100 ps. Interestingly, the two time scales depend on the amount of the capping agent present on the surface of TeNWs, showing a faster relaxation of the photoexcited carriers as the percentage of capping decreases. This is physically interpreted as the surface state mediated relaxation mechanism of the photo-pumped carriers depending on the density of available surface states. A quantitative understanding is obtained using a coupled rate equation model taking into account the decay mechanisms determined from the surface mediated relaxation rate (DS) and direct recombination rate (DR) of the electron-hole pairs. Furthermore, the measured lattice temperature (TL) dependent dynamics, showing a faster relaxation at lower temperature, is understood using the same rate equation model, giving a power law dependence of the electron-hole recombination rate (DR) on TL as DR ∝ TL-1/2. This is explained by estimating DR using the van Roosbroeck-Shockley theory taking into account the density of states () of one-dimensional nanowires. Furthermore, to understand the measured frequency-dependent THz photoconductivity, we model Δσ(ω) using the Boltzmann transport equation taking into account the energy-dependent scattering rates showing the dominant role of short range (Γsr) and Coulomb scattering (ΓC) rates in the relaxation process, which further provides a measure of the charged and neutral impurity concentrations.

2.
Nanoscale ; 13(17): 8283-8292, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33890585

RESUMO

Collective excitation of Dirac plasmons in graphene and topological insulators has opened new possibilities of tunable plasmonic materials ranging from THz to mid-infrared regions. Using time resolved Optical Pump-Terahertz Probe (OPTP) spectroscopy, we demonstrate the presence of plasmonic oscillations in bismuth telluride nanowires (Bi2Te3 NWs) after photoexcitation using an 800 nm pump pulse. In the frequency domain, the differential conductivity (Δσ = σpump on-σpump off) spectrum shows a Lorentzian response where the resonance frequency (ωp), attributed to surface plasmon oscillations, shifts with photogenerated carrier density (n) as . This dependence establishes the absorption of THz radiation by the Dirac surface plasmon oscillations of the charge carriers in the Topological Surface States (TSS) of Bi2Te3 NWs. Moreover, we obtain a modulation depth, tunable by pump fluence, of ∼40% over the spectral range of 0.5 to 2.5 THz. In addition, the time evolution of Δσ(t) represents a long relaxation channel lasting for more than 50 ps. We model the decay dynamics of Δσ(t) using coupled second order rate equations, highlighting the contributions from surface recombination as well as from trap mediated relaxation channels of the photoinjected carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...