Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(4-1): 044210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198808

RESUMO

We study numerically the vortex dynamics and vortex-lattice formation in a rotating density-dependent Bose-Einstein condensate (BEC), characterized by the presence of nonlinear rotation. By varying the strength of nonlinear rotation in density-dependent BECs, we calculate the critical frequency, Ω_{cr}, for vortex nucleation both in adiabatic and sudden external trap rotations. The nonlinear rotation modifies the extent of deformation experienced by the BEC due to the trap and shifts the Ω_{cr} values for vortex nucleation. The critical frequencies, and thereby the transition to vortex-lattices in an adiabatic rotation ramp, depend on conventional s-wave scattering lengths through the strength of nonlinear rotation, C, such that Ω_{cr}(C>0)<Ω_{cr}(C=0)<Ω_{cr}(C<0). In an analogous manner, the critical ellipticity (ε_{cr}) for vortex nucleation during an adiabatic introduction of trap ellipticity (ε) depends on the nature of nonlinear rotation besides trap rotation frequency. The nonlinear rotation additionally affects the vortex-vortex interactions and the motion of the vortices through the condensate by altering the strength of Magnus force on them. The combined result of these nonlinear effects is the formation of the non-Abrikosov vortex-lattices and ring-vortex arrangements in the density-dependent BECs.

2.
Phys Rev E ; 107(2-1): 024202, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932573

RESUMO

In the present work we revisit the Salerno model as a prototypical system that interpolates between a well-known integrable system (the Ablowitz-Ladik lattice) and an experimentally tractable, nonintegrable one (the discrete nonlinear Schrödinger model). The question we ask is, for "generic" initial data, how close are the integrable to the nonintegrable models? Our more precise formulation of this question is, How well is the constancy of formerly conserved quantities preserved in the nonintegrable case? Upon examining this, we find that even slight deviations from integrability can be sensitively felt by measuring these formerly conserved quantities in the case of the Salerno model. However, given that the knowledge of these quantities requires a deep physical and mathematical analysis of the system, we seek a more "generic" diagnostic towards a manifestation of integrability breaking. We argue, based on our Salerno model computations, that the full spectrum of Lyapunov exponents could be a sensitive diagnostic to that effect.

3.
Phys Rev E ; 104(1-1): 014218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412341

RESUMO

Weakly nonintegrable many-body systems can restore ergodicity in distinctive ways depending on the range of the interaction network in action space. Action resonances seed chaotic dynamics into the networks. Long-range networks provide well connected resonances with ergodization controlled by the individual resonance chaos time scales. Short-range networks instead yield a dramatic slowing down of ergodization in action space, and lead to rare resonance diffusion. We use Josephson junction chains as a paradigmatic study case. We exploit finite time average distributions to characterize the thermalizing dynamics of actions. We identify an action resonance diffusion regime responsible for the slowing down. We extract the diffusion coefficient of that slow process and measure its dependence on the proximity to the integrable limit. Independent measures of correlation functions confirm our findings. The observed fragile diffusion is relying on weakly chaotic dynamics in spatially isolated action resonances. It can be suppressed, and ergodization delayed, by adding weak action noise, as a proof of concept.

4.
Phys Rev E ; 103(3-1): 032211, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862787

RESUMO

The Salerno model constitutes an intriguing interpolation between the integrable Ablowitz-Ladik (AL) model and the more standard (nonintegrable) discrete nonlinear Schrödinger (DNLS) one. The competition of local on-site nonlinearity and nonlinear dispersion governs the thermalization of this model. Here, we investigate the statistical mechanics of the Salerno one-dimensional lattice model in the nonintegrable case and illustrate the thermalization in the Gibbs regime. As the parameter interpolating between the two limits (from DNLS toward AL) is varied, the region in the space of initial energy and norm densities leading to thermalization expands. The thermalization in the non-Gibbs regime heavily depends on the finite system size; we explore this feature via direct numerical computations for different parametric regimes.

5.
Phys Rev E ; 100(3-1): 032217, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31639954

RESUMO

Integrable many-body systems are characterized by a complete set of preserved actions. Close to an integrable limit, a nonintegrable perturbation creates a coupling network in action space which can be short or long ranged. We analyze the dynamics of observables which become the conserved actions in the integrable limit. We compute distributions of their finite time averages and obtain the ergodization time scale T_{E} on which these distributions converge to δ distributions. We relate T_{E} to the statistics of fluctuation times of the observables, which acquire fat-tailed distributions with standard deviations σ_{τ}^{+} dominating the means µ_{τ}^{+} and establish that T_{E}∼(σ_{τ}^{+})^{2}/µ_{τ}^{+}. The Lyapunov time T_{Λ} (the inverse of the largest Lyapunov exponent) is then compared to the above time scales. We use a simple Klein-Gordon chain to emulate long- and short-range coupling networks by tuning its energy density. For long-range coupling networks T_{Λ}≈σ_{τ}^{+}, which indicates that the Lyapunov time sets the ergodization time, with chaos quickly diffusing through the coupling network. For short-range coupling networks we observe a dynamical glass, where T_{E} grows dramatically by many orders of magnitude and greatly exceeds the Lyapunov time, which satisfies T_{Λ}≲µ_{τ}^{+}. This effect arises from the formation of highly fragmented inhomogeneous distributions of chaotic groups of actions, separated by growing volumes of nonchaotic regions. These structures persist up to the ergodization time T_{E}.

6.
Phys Rev Lett ; 122(5): 054102, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822006

RESUMO

Models of classical Josephson junction chains turn integrable in the limit of large energy densities or small Josephson energies. Close to these limits the Josephson coupling between the superconducting grains induces a short-range nonintegrable network. We compute distributions of finite-time averages of grain charges and extract the ergodization time T_{E} which controls their convergence to ergodic δ distributions. We relate T_{E} to the statistics of fluctuation times of the charges, which are dominated by fat tails. T_{E} is growing anomalously fast upon approaching the integrable limit, as compared to the Lyapunov time T_{Λ}-the inverse of the largest Lyapunov exponent-reaching astonishing ratios T_{E}/T_{Λ}≥10^{8}. The microscopic reason for the observed dynamical glass is rooted in a growing number of grains evolving over long times in a regular almost integrable fashion due to the low probability of resonant interactions with the nearest neighbors. We conjecture that the observed dynamical glass is a generic property of Josephson junction networks irrespective of their space dimensionality.

7.
Phys Rev Lett ; 120(18): 184101, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775355

RESUMO

The microcanonical Gross-Pitaevskii (also known as the semiclassical Bose-Hubbard) lattice model dynamics is characterized by a pair of energy and norm densities. The grand canonical Gibbs distribution fails to describe a part of the density space, due to the boundedness of its kinetic energy spectrum. We define Poincaré equilibrium manifolds and compute the statistics of microcanonical excursion times off them. The tails of the distribution functions quantify the proximity of the many-body dynamics to a weakly nonergodic phase, which occurs when the average excursion time is infinite. We find that a crossover to weakly nonergodic dynamics takes place inside the non-Gibbs phase, being unnoticed by the largest Lyapunov exponent. In the ergodic part of the non-Gibbs phase, the Gibbs distribution should be replaced by an unknown modified one. We relate our findings to the corresponding integrable limit, close to which the actions are interacting through a short range coupling network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...