Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 43(3)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36809461

RESUMO

Prokaryotes use the adaptive immunity mediated via the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated (CRISPR-Cas) system for protection against invading elements such as phages and plasmids. The immunity is achieved by capturing small DNA fragments or spacers from foreign nucleic acids (protospacers) and integrating them into the host CRISPR locus. This step of CRISPR-Cas immunity called 'naïve CRISPR adaptation' requires the conserved Cas1-Cas2 complex and is often supported by variable host proteins that assist in spacer processing and integration. Bacteria that have acquired new spacers become immune to the same invading elements when reinfected. CRISPR-Cas immunity can also be updated by integrating new spacers from the same invading elements, a process called 'primed adaptation'. Only properly selected and integrated spacers are functional in the next steps of CRISPR immunity when their processed transcripts are used for RNA-guided target recognition and interference (target degradation). Capturing, trimming, and integrating new spacers in the correct orientation are universal steps of adaptation to all CRISPR-Cas systems, but some details are CRISPR-Cas type-specific and species-specific. In this review, we provide an overview of the mechanisms of CRISPR-Cas class 1 type I-E adaptation in Escherichia coli as a general model for adaptation processes (DNA capture and integration) that have been studied in detail. We focus on the role of host non-Cas proteins involved in adaptation, particularly on the role of homologous recombination.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Sistemas CRISPR-Cas/genética , Plasmídeos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , DNA/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799639

RESUMO

Cas3 is a ssDNA-targeting nuclease-helicase essential for class 1 prokaryotic CRISPR immunity systems, which has been utilized for genome editing in human cells. Cas3-DNA crystal structures show that ssDNA follows a pathway from helicase domains into a HD-nuclease active site, requiring protein conformational flexibility during DNA translocation. In genetic studies, we had noted that the efficacy of Cas3 in CRISPR immunity was drastically reduced when temperature was increased from 30 °C to 37 °C, caused by an unknown mechanism. Here, using E. coli Cas3 proteins, we show that reduced nuclease activity at higher temperature corresponds with measurable changes in protein structure. This effect of temperature on Cas3 was alleviated by changing a single highly conserved tryptophan residue (Trp-406) into an alanine. This Cas3W406A protein is a hyperactive nuclease that functions independently from temperature and from the interference effector module Cascade. Trp-406 is situated at the interface of Cas3 HD and RecA1 domains that is important for maneuvering DNA into the nuclease active site. Molecular dynamics simulations based on the experimental data showed temperature-induced changes in positioning of Trp-406 that either blocked or cleared the ssDNA pathway. We propose that Trp-406 forms a 'gate' for controlling Cas3 nuclease activity via access of ssDNA to the nuclease active site. The effect of temperature in these experiments may indicate allosteric control of Cas3 nuclease activity caused by changes in protein conformations. The hyperactive Cas3W406A protein may offer improved Cas3-based genetic editing in human cells.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Triptofano/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Domínio Catalítico/genética , Dicroísmo Circular , DNA/química , DNA/genética , DNA Helicases/química , DNA Helicases/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Edição de Genes/métodos , Humanos , Mutação de Sentido Incorreto , Conformação Proteica , Homologia de Sequência de Aminoácidos , Temperatura , Triptofano/química , Triptofano/genética
3.
Biochimie ; 174: 136-143, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32353388

RESUMO

Functional CRISPR-Cas systems provide many bacteria and most archaea with adaptive immunity against invading DNA elements. CRISPR arrays store DNA fragments of previous infections while products of cas genes provide immunity by integrating new DNA fragments and using this information to recognize and destroy invading DNA. Escherichia coli contains the CRISPR-Cas type I-E system in which foreign DNA targets are recognized by Cascade, a crRNA-guided complex comprising five proteins (CasA, CasB, CasC, CasD, CasE), and degraded by Cas3. In E. coli the CRISPR-Cas type I-E system is repressed by the histone-like nucleoid-structuring protein H-NS. H-NS repression can be relieved either by inactivation of the hns gene or by elevated levels of the H-NS antagonist LeuO, which induces higher transcript levels of cas genes than was observed for Δhns cells. This suggests that derepression in Δhns cells is incomplete and that an additional repressor could be involved in the silencing. One such candidate is the H-NS paralog protein StpA, which has DNA binding preferences similar to those of H-NS. Here we show that overexpression of StpA in Δhns cells containing anti-lambda spacers abolishes resistance to λvir infection and reduces transcription of the casA gene. In cells lacking hns and stpA genes, the transcript levels of the casA gene are higher than Δhns and similar to wt cells overexpressing LeuO. Taken together, these results suggest that Cascade genes in E. coli are repressed by the StpA protein when H-NS is absent.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...