Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781103

RESUMO

Endocrine therapies (ET) with CDK4/6 inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of 22 ER+ breast cancer patient-derived xenografts (PDXs) demonstrated that PKMYT1, a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX organoids and xenografts, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.

2.
PLoS One ; 18(1): e0279590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36607962

RESUMO

We evaluated the association of disease outcome with T cell immune-related characteristics and T cell receptor (TCR) repertoire in malignant ascites from patients with high-grade epithelial ovarian cancer. Ascitic fluid samples were collected from 47 high-grade epithelial ovarian cancer patients and analyzed using flow cytometry and TCR sequencing to characterize the complementarity determining region 3 TCR ß-chain. TCR functions were analyzed using the McPAS-TCR and VDJ databases. TCR clustering was implemented using Grouping of Lymphocyte Interactions by Paratope Hotspots software. Patients with poor prognosis had ascites characterized by an increased ratio of CD8+ T cells to regulatory T cells, which correlated with an increased productive frequency of the top 100 clones and decreased productive entropy. TCRs enriched in patients with an excellent or good prognosis were more likely to recognize cancer antigens and contained more TCR reads predicted to recognize epithelial ovarian cancer antigens. In addition, a TCR motif that is predicted to bind the TP53 neoantigen was identified, and this motif was enriched in patients with an excellent or good prognosis. Ascitic fluid in high-grade epithelial ovarian cancer patients with an excellent or good prognosis is enriched with TCRs that may recognize ovarian cancer-specific neoantigens, including mutated TP53 and TEAD1. These results suggest that an effective antigen-specific immune response in ascites is vital for a good outcome in high-grade epithelial ovarian cancer.


Assuntos
Ascite , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/metabolismo , Ascite/metabolismo , Receptores de Antígenos de Linfócitos T , Neoplasias Ovarianas/metabolismo , Linfócitos T CD8-Positivos , Imunidade
3.
Cancer Immunol Res ; 10(2): 259-271, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35045973

RESUMO

Human papillomavirus (HPV) infection causes 600,000 new cancers worldwide each year. HPV-related cancers express the oncogenic proteins E6 and E7, which could serve as tumor-specific antigens. It is not known whether immunity to E6 and E7 evolves during chemoradiotherapy or affects survival. Using T cells from 2 HPV16+ patients, we conducted functional T-cell assays to identify candidate HPV-specific T cells and common T-cell receptor motifs, which we then analyzed across 86 patients with HPV-related cancers. The HPV-specific clones and E7-related T-cell receptor motifs expanded in the tumor microenvironment over the course of treatment, whereas non-HPV-specific T cells did not. In HPV16+ patients, improved recurrence-free survival was associated with HPV-responsive T-cell expansion during chemoradiotherapy.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Quimiorradioterapia , Feminino , Papillomavirus Humano 16 , Humanos , Proteínas E7 de Papillomavirus , Prognóstico , Proteínas Repressoras , Linfócitos T , Microambiente Tumoral
4.
Sci Rep ; 11(1): 9149, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911091

RESUMO

Ovarian cancer is associated with a high mortality rate due to diagnosis at advanced stages. Dissemination often occurs intraperitoneally within the ascites fluid. The microenvironment can support dissemination through several mechanisms. One potential ascites factor which may mediate dissemination are EVs or extracellular vesicles that can carry information in the form of miRNAs, proteins, lipids, and act as mediators of cellular communication. We present our observations on EVs isolated from ascitic supernatants from patients diagnosed with high grade serous ovarian carcinoma in augmenting motility, growth, and migration towards omental fat. MicroRNA profiling of EVs from malignant ascitic supernatant demonstrates high expression of miR 200c-3p, miR18a-5p, miR1246, and miR1290 and low expression of miR 100- 5p as compared to EVs isolated from benign ascitic supernatant. The migration of ovarian cancer spheroids towards omental fat is enhanced in the presence of malignant ascitic EVs. Gene expression of these cells showed increased expression of ZBED2, ZBTB20, ABCC3, UHMK1, and low expression of Transgelin and MARCKS. We present evidence that ovarian ascitic EVs increase the growth of ovarian cancer spheroids through miRNAs.


Assuntos
Líquido Ascítico/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/patologia , Idoso , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neoplasias Ovarianas/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Microambiente Tumoral , Regulação para Cima/efeitos dos fármacos
5.
Clin Transl Radiat Oncol ; 26: 98-103, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33367119

RESUMO

PURPOSE: To describe the baseline and serial tumor microbiome in HPV-associated oropharynx cancer (OPC) over the course of radiotherapy (RT). METHODS: Patients with newly diagnosed HPV-associated OPC treated with definitive radiotherapy +/- concurrent chemotherapy were enrolled in this prospective study. Using 16S rRNA gene sequencing, dynamic changes in the tumor site microbiome during RT were investigated. Surface tumor samples were obtained before RT and at week 1, 3 and 5 of RT. Radiological primary tumor response at mid-treatment was categorized as complete (CR) or partial (PR). RESULTS: Ten patients were enrolled, but 9 patients were included in the final analysis. Mean age was 62 years (range: 51-71). As per AJCC 8th Ed, 56%, 22% and 22% of patients had stage I, II and III, respectively. At 4-weeks, 6 patients had CR and 3 patients had PR; at follow-up imaging post treatment, all patients had CR. The baseline diversity of the tumoral versus buccal microbiome was not statistically different. For the entire cohort, alpha diversity was significantly decreased over the course of treatment (p = 0.04). There was a significant alteration in the bacterial community within the first week of radiation. Baseline tumor alpha diversity of patients with CR was significantly higher than those with PR (p = 0.03). While patients with CR had significant reduction in diversity over the course of radiation (p = 0.01), the diversity remained unchanged in patients with PR. Patients with history of smoking had significantly increased abundance of  Kingella (0.05) and lower abundance of Stomatobaculum (p = 0.03) compared to never smokers. CONCLUSIONS: The tumor microbiome of HPV-associated OPC exhibits reduced alpha diversity and altered taxa abundance over the course of radiotherapy. The baseline bacterial profiles of smokers vs. non-smokers were inherently different. Baseline tumor alpha diversity of patients with CR was higher than patients with PR, suggesting that the microbiome deserves further investigation as a biomarker of radiation response.

6.
Int J Radiat Oncol Biol Phys ; 107(1): 163-171, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987960

RESUMO

PURPOSE: Patients receiving pelvic radiation for cervical cancer experience high rates of acute gastrointestinal (GI) toxicity. The association of changes in the gut microbiome with bowel toxicity from radiation is not well characterized. METHODS AND MATERIALS: Thirty-five patients undergoing definitive chemoradiation therapy (CRT) underwent longitudinal sampling (baseline and weeks 1, 3, and 5) of the gut microbiome and prospective assessment of patient-reported GI toxicity. DNA was isolated from stool obtained at rectal examination and analyzed with 16S rRNA sequencing. GI toxicity was assessed with the Expanded Prostate Cancer Index Composite instrument to evaluate frequency, urgency, and discomfort associated with bowel function. Shannon diversity index was used to characterize alpha (within sample) diversity. Weighted UniFrac principle coordinates analysis was used to compare beta (between sample) diversity between samples using permutational multivariate analysis of variance. Linear discriminant analysis effect size highlighted microbial features that best distinguish categorized patient samples. RESULTS: Gut microbiome diversity continuously decreased over the course of CRT, with the largest decrease at week 5. Expanded Prostate Cancer Index Composite bowel function scores also declined over the course of treatment, reflecting increased symptom burden. At all individual time points, higher diversity of the gut microbiome was linearly correlated with better patient-reported GI function, but baseline diversity was not predictive of eventual outcome. Patients with high toxicity demonstrated different compositional changes during CRT in addition to compositional differences in Clostridia species. CONCLUSIONS: Over time, increased radiation toxicity is associated with decreased gut microbiome diversity. Baseline diversity is not predictive of end-of-treatment bowel toxicity, but composition may identify patients at risk for developing high toxicity.


Assuntos
Quimiorradioterapia/efeitos adversos , Microbioma Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/efeitos da radiação , Segurança , Neoplasias do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/terapia , Adulto , Idoso , Biodiversidade , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Medidas de Resultados Relatados pelo Paciente , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapia
7.
Sci Rep ; 5: 11995, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26146406

RESUMO

We have previously reported that expression of NMI (N-myc and STAT interactor) is compromised in invasive breast cancers. We also demonstrated that loss of NMI expression promotes epithelial-mesenchymal-transition and results in enhanced invasive ability of breast cancer cells. Additionally we had demonstrated that restoration of NMI expression reduced breast cancer xenograft growth and downregulated Wnt and TGFß/SMAD signaling. Here we present our observations that NMI expression drives autophagy. Our studies were promoted by our observation that NMI expressing breast cancer cells showed autophagic vacuoles and LC3 processing. Additionally, we found that NMI expression increased the cisplatin sensitivity of the breast cancer cells. Our mechanistic investigations show that NMI prompts activation of GSK3-ß. This multifunctional kinase is an upstream effector of the TSC1/TSC2 complex that regulates mTOR signaling. Inhibition of GSK3-ß activity in NMI expressing cells activated mTOR signaling and decreased the cells' autophagic response. Additionally we demonstrate that a key component of autophagy, DNA-damage regulated autophagy modulator 1 (DRAM1), is regulated by NMI. Our TCGA database analysis reveals concurrent expression of NMI and DRAM1 in breast cancer specimens. We present evidence that NMI sensitizes breast cancer cells to cisplatin treatment through DRAM1 dependent autophagy.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Cisplatino/toxicidade , Doxorrubicina/uso terapêutico , Doxorrubicina/toxicidade , Feminino , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transplante Heterólogo
8.
Mol Cancer ; 13: 200, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25174825

RESUMO

BACKGROUND: N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis. METHOD: Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3ß phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses. RESULTS: Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/ß-catenin signaling resulting from inactivation of GSK3ß. CONCLUSION: Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Algoritmos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Transição Epitelial-Mesenquimal , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais
9.
PLoS One ; 9(9): e107142, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216266

RESUMO

OBJECTIVE: Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.


Assuntos
Aldeído Desidrogenase/metabolismo , Pontos de Checagem do Ciclo Celular , Reparo do DNA , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Transdução de Sinais , Família Aldeído Desidrogenase 1 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA/efeitos dos fármacos , Intervalo Livre de Doença , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Neoplasias Ovarianas/tratamento farmacológico , Fenótipo , Platina/farmacologia , Platina/uso terapêutico , Retinal Desidrogenase , Transdução de Sinais/efeitos dos fármacos
10.
Lab Invest ; 92(9): 1310-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710984

RESUMO

DNAJB6 is a constitutively expressed member of the HSP40 family. It has been described as a negative regulator of breast tumor progression and a regulator of epithelial phenotype. Expression of DNAJB6 is reported to be compromised with tumor progression. However, factors responsible for its downregulation are still undefined. We used a knowledge-based screen for identifying miRNAs capable of targeting DNAJB6. In this work, we present our findings that hsa-miR-632 (miR-632) targets the coding region of DNAJB6. Invasive and metastatic breast cancer cells express high levels of miR-632 compared with mammary epithelial cells. Analysis of RNA from breast tumor specimens reveals inverse expression patterns of DNAJB6 transcript and miR-632. In response to exogenous miR-632 expression, DNAJB6 protein levels are downregulated and the resultant cell population shows significantly increased invasive ability. Silencing endogenous miR-632 abrogates invasive ability of breast cancer cells and promotes epithelial like characteristics noted by E-cadherin expression with concomitant decrease in mesenchymal markers such as Zeb2 and Slug. Thus, miR-632 is a potentially important epigenetic regulator of DNAJB6, which contributes to the downregulation of DNAJB6 and plays a supportive role in malignant progression.


Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo , Proteínas de Choque Térmico HSP40/metabolismo , MicroRNAs/fisiologia , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Bases , Sítios de Ligação , Western Blotting , Neoplasias da Mama/patologia , Primers do DNA , Feminino , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Exp Cell Res ; 318(10): 1086-93, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22504047

RESUMO

HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Choque Térmico HSP40/metabolismo , Resposta ao Choque Térmico , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinais de Localização Nuclear/metabolismo , Animais , Células COS , Hipóxia Celular , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Chlorocebus aethiops , Proteínas de Choque Térmico HSP40/química , Humanos , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/química , Sinais de Localização Nuclear/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
12.
Biochem J ; 444(3): 573-80, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22455953

RESUMO

DKK1 (dickkopf 1 homologue) is a secreted inhibitor of the Wnt signalling pathway and a critical modulator of tumour promotion and the tumour microenvironment. However, mechanisms regulating DKK1 expression are understudied. DNAJB6 {DnaJ [HSP40 (heat-shock protein 40 kDa)] homologue, subfamily B, member 6} is an HSP40 family member whose expression is compromised during progression of breast cancer and melanoma. Inhibition of the Wnt/ß-catenin signalling pathway by up-regulation of DKK1 is one of the key mechanisms by which DNAJB6 suppresses tumour metastasis and EMT (epithelial-mesenchymal transition). Analysis of the DKK1 promoter to define the cis-site responsible for its up-regulation by DNAJB6 revealed the presence of two binding sites for a transcriptional repressor, MSX1 (muscle segment homeobox 1). Our investigations showed that MSX1 binds the DKK1 promoter and inhibits DKK1 transcription. Interestingly, silencing DNAJB6 resulted in up-regulation of MSX1 concomitant with increased stabilization of ß-catenin. ChIP (chromatin immunoprecipitation) studies revealed that ß-catenin binds the MSX1 promoter and stabilization of ß-catenin elevates MSX1 transcription, indicating that ß-catenin works as a transcription co-activator for MSX1. Functionally, exogenous expression of MSX1 in DNAJB6-expressing cells promotes the mesenchymal phenotype by suppression of DKK1. Thus we have identified a novel regulatory mechanism of DNAJB6-mediated DKK1 transcriptional up-regulation that can influence EMT. DKK1 is a feedback regulator of ß-catenin levels and thus our studies also define an additional negative control of this ß-catenin/DKK1 feedback loop by MSX1, which may potentially contribute to excessive stabilization of ß-catenin.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator de Transcrição MSX1/fisiologia , Chaperonas Moleculares/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , Animais , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Estabilidade Proteica , Proteínas Wnt/fisiologia
13.
J Biol Chem ; 285(32): 24686-94, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20522561

RESUMO

We showed that expression of MRJ (DNAJB6) protein is lost in invasive ductal carcinoma, and restoration of MRJ(L) restricts malignant behavior of breast cancer and melanoma cells. However, the signaling pathways influenced by MRJ(L) are largely unknown. Our observations revealed that MRJ(L) expression causes changes in cell morphology concomitant with down-regulation of several mesenchymal markers, viz. vimentin, N-cadherin, Twist, and Slug, and up-regulation of epithelial marker keratin 18. Importantly, MRJ(L) expression led to reduced levels of beta-catenin, an epithelial mesenchymal transition marker, and a critical player in the Wnt pathway. We found that MRJ(L) up-regulates expression of DKK1, a well known Wnt/beta-catenin signaling inhibitor, that causes degradation of beta-catenin. Re-expression of DNAJB6 alters the Wnt/beta-catenin signaling in cancer cells, leading to partial reversal of the mesenchymal phenotype. Thus, MRJ(L) may play a role in maintaining an epithelial phenotype, and inhibition of the Wnt/beta-catenin pathway may be one of the potential mechanisms contributing to the restriction of malignant behavior by MRJ(L).


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Mesoderma/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , beta Catenina/metabolismo , Movimento Celular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Metástase Neoplásica , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Wnt/metabolismo , Cicatrização
14.
J Cell Mol Med ; 14(6B): 1693-706, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19538464

RESUMO

The growth of cancer cells as multicellular spheroids has frequently been reported to mimic the in vivo tumour architecture and physiology and has been utilized to study antitumour drugs. In order to determine the distinctive characteristics of the spheroid-derived cells compared to the corresponding monolayer-derived cells, we enriched multicellular spheroid-forming subpopulations of cells from three human breast cancer cell lines (MCF7, MCF10AT and MCF10DCIS.com). These spheroid-derived cells were injected into female athymic nude mice to assess their tumorigenic potential and were profiled for their characteristic miRNA signature. We discovered that the spheroid-derived cells expressed increased levels of osteopontin (OPN), an oncogenic protein that has been clinically correlated with increased tumour burden and adverse prognosis in patients with breast cancer metastasis. Our studies further show that increased OPN levels are brought about in part, by decreased levels of hsa-mir-299-5p in the spheroid-forming population from all three cell lines. Moreover, the spheroid-forming cells can organize into vascular structures in response to nutritional limitation; these structures recapitulate a vascular phenotype by the expression of endothelial markers CD31, Angiopoeitin-1 and Endoglin. In this study, we have validated that hsa-mir-299-5p targets OPN; de novo expression of OPN in turn plays a critical role in enhancing proliferation, tumorigenicity and the ability to display vasculogenic mimicry of the spheroid-forming cells.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Osteopontina/genética , Esferoides Celulares/patologia , Neoplasias da Mama/patologia , Regulação para Baixo/genética , Feminino , Humanos , Osteopontina/metabolismo , Osteopontina/ultraestrutura , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestrutura , Células Tumorais Cultivadas
15.
Clin Exp Metastasis ; 26(6): 559-67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19340594

RESUMO

HSP40 (DNAJ) is an understudied family of co-chaperones. The human genome codes for over 41 members of HSP40 family that reside at distinct intracellular locations. Despite their large numbers, little is known about their physiologic roles. Recent research has revealed involvement of some of the DNAJ family members in various types of cancers. In this article we summarize the information about the involvement of human DNAJ family members in various aspects of cancer biology. Furthermore we discuss the potential role of the J domain of DNAJ proteins in cancer biology.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Neoplasias/etiologia , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/fisiologia , Humanos , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia
16.
Int J Cancer ; 125(3): 556-64, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19358268

RESUMO

We found that the expression levels of N-Myc interactor (Nmi) were low in aggressive breast cancer cell lines when compared with less aggressive cell lines. However, the lower levels in the aggressive lines were inducible by interferon-gamma (IFN-gamma). Because Nmi has been reported to be a transcription cofactor that augments IFN-gamma induced transcription activity, we decided to test whether Nmi regulates expression of Dkk1, which is also inducible by IFN-gamma. We established stable clones constitutively expressing Nmi in MDA-MB-231 (breast) and MDA-MB-435 (melanoma) cell lines. Dkk1 was significantly up-regulated in the Nmi expressing clones concurrent with reduced levels of the critical transcription cofactor of Wnt pathway, beta-catenin. Treatment of the Nmi expressors with blocking antibody to Dkk1 restored beta-catenin protein levels. c-Myc is a known downstream target of activated beta-catenin signaling. Treatment of Nmi expressors with the proteosome inhibitor MG132, resulted in elevated beta-catenin levels with concomitant elevation of c-Myc levels. Our functional studies showed that constitutive expression of Nmi reduced the ability of tumor cells for the invasion, anchorage independent growth and tumor growth in vivo. Collectively, the data suggest that overexpression of Nmi inhibits the Wnt/beta-catenin signaling via up-regulation of Dkk1 and retards tumor growth.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Plasmídeos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Células Tumorais Cultivadas , Regulação para Cima
17.
Curr Cancer Drug Targets ; 8(5): 421-30, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18690848

RESUMO

Nuclear protein 1 (NUPR1/com1/p8) has been shown to interact with transcriptional regulators such as p300, PTIP, estrogen receptor-beta, and SMAD. NUPR1 also has been implicated in the regulation of cell cycle and apoptosis. An increase in NUPR1 expression has been seen with serum starvation and in response to compounds such as cycloheximide, ceramide, and staurosporine. There are several overtly conflicting reports about the exact role of NUPR1 in tumor biology. This work investigates the nature of the relationship between NUPR1 and the cdk-inhibitor p21 (Waf1/Cip1) expression. We show that the expression of resident and doxorubicin-induced p21 paralleled that of endogenous NUPR1 levels. NUPR1 formed a complex with p53 and p300 and bound the p21 promoter and transcriptionally upregulated p21 expression. Moreover, NUPR1 allowed cells to progress through cell cycle in presence of doxorubicin. Since NUPR1 upregulated p21, concomitant with phosphorylation of Rb and upregulation of the anti-apoptotic protein, Bcl-x(L) we propose that NUPR1 expression imparts a cell growth and survival advantage. Importantly, we also report that NUPR1 conferred resistance to two chemotherapeutic drugs, Taxol and doxorubicin.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/genética , Resistencia a Medicamentos Antineoplásicos , Proteína p300 Associada a E1A/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Imunoprecipitação , Luciferases/metabolismo , Proteínas de Neoplasias/genética , Paclitaxel/farmacologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína do Retinoblastoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Ativação Transcricional , Transfecção , Proteína bcl-X/metabolismo
18.
Breast Cancer Res ; 10(2): R22, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18328103

RESUMO

INTRODUCTION: Mammalian relative of DnaJ (MRJ [DNAJB6]), a novel member of the human DnaJ family, has two isoforms. The smaller isoform, MRJ(S), is studied mainly for its possible role in Huntington's disease. There are no reports of any biologic activity of the longer isoform, MRJ(L). We investigated whether this molecule plays any role in breast cancer. Our studies were prompted by interesting observations we made regarding the expression of MRJ in breast cancer cell lines and breast cancer tissue microarrays, as described below. METHODS: Expression of MRJ(L) from several breast cancer cell lines was evaluated using real-time PCR. Relative levels of the small and large isoforms in breast cancer cell lines were studied using Western blot analysis. A breast cancer progression tissue microarray was probed using anti-MRJ antibody. MRJ(L) was ectopically expressed in two breast cancer cell lines. These cell lines were evaluated for their in vitro correlates of tumor aggressiveness, such as invasion, migration, and anchorage independence. The cell lines were also evaluated for in vivo tumor growth and metastasis. The secreted proteome of the MRJ(L) expressors was analyzed to elucidate the biochemical changes brought about by re-expression of MRJ(L). RESULTS: We found that MRJ(L) is expressed at a significantly lower level in aggressive breast cancer cell lines compared with normal breast. Furthermore, in clinical cases of breast cancer expression of MRJ is lost as the grade of infiltrating ductal carcinoma advances. Importantly, MRJ staining is lost in those cases that also had lymph node metastasis. We report that MRJ(L) is a protein with a functional nuclear localization sequence. Expression of MRJ(L) via an exogenous promoter in breast cancer cell line MDA-MB-231 and in MDA-MB-435 (a cell line that metastasizes from the mammary fat pad) decreases their migration and invasion, reduces their motility, and significantly reduces orthotopic tumor growth in nude mice. Moreover, the secreted proteome of the MRJ(L)-expressing cells exhibited reduced levels of tumor progression and metastasis promoting secreted proteins, such as SPP1 (osteopontin), AZGP1 (zinc binding alpha2-glycoprotein 1), SPARC (osteonectin), NPM1 (nucleophosmin) and VGF (VGF nerve growth factor inducible). On the other hand, levels of the secreted metastasis-suppressor KiSS1 (melanoma metastasis suppressor) were increased in the secreted proteome of the MRJ(L)-expressing cells. We confirmed by quantitative RT-PCR analysis that the secreted profile reflected altered transcription of the respective genes. CONCLUSION: Collectively, our data indicate an important role for a totally uncharacterized isoform of DNAJB6 in breast cancer. We show that MRJ(L) is a nuclear protein that is lost in breast cancer, that regulates several key players in tumor formation and metastasis, and that is functionally able to retard tumor growth.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , DNA Complementar/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Humanos , Immunoblotting , Kisspeptinas , Camundongos , Camundongos Nus , Análise em Microsséries , Microscopia Confocal , Chaperonas Moleculares/genética , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Nucleofosmina , Isoformas de Proteínas , RNA Neoplásico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima , Cicatrização
19.
J Cancer Res Clin Oncol ; 132(8): 505-13, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16788844

RESUMO

PURPOSE: Several studies indicate that integrin receptors are involved in the regulation of matrix metalloproteinase (MMP) expression. Integrin-ECM ligand interaction leads to phosphorylation of focal adhesion kinase (FAK) and activation of mitogen activated protein kinase pathways. In this present communication, we cultured human cervical cancer cells, SiHa, in the presence of fibronectin to study fibronectin-integrin mediated modulation of MMP activity. METHODS: SiHa cells were cultured in serum-free medium (SFCM) in the presence of fibronectin, SFCM was collected and gelatin zymography was performed. Western blot, RT-PCR and immunocytochemistry were performed with SiHa cells cultured in the presence of fibronectin. RESULTS: The culture of SiHa cells in the presence of 50 microg/1.5 ml fibronectin led to expression of pro-MMP-9 and activation of MMP-2 within 2 h. When cells were treated with ERK inhibitor (PD98059) and grown in the presence of fibronectin MMP-2 activation was partially inhibited, but when cells were treated with PI-3K inhibitor (LY294002) and grown in the presence of fibronectin MMP-2 activation was appreciably reduced. Tyrosine phosphorylation of FAK, PI-3K and ERK and nuclear trafficking of ERK were increased in SiHa cells grown in the presence of fibronectin. Increased MT1-MMP mRNA expression and processing of MT1-MMP were also observed in SiHa cells grown in the presence of fibronectin. CONCLUSIONS: Our findings indicate that the culture of SiHa cells in SFCM in the presence of fibronectin perhaps generates a signalling cascade which leads to the expression of pro-MMP-9 and the activation of MMP-2 within 2 h. The signalling pathways activated seem to be the FAK/ERK/PI-3K pathway.


Assuntos
Fibronectinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias do Colo do Útero/metabolismo , Western Blotting , Adesão Celular , Meios de Cultura Livres de Soro , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Humanos , Imuno-Histoquímica , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/enzimologia
20.
J Environ Pathol Toxicol Oncol ; 25(4): 655-66, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17341206

RESUMO

UNLABELLED: Among the soluble MMPs, MMP-2 (gelatinase A) is particularly important in the invasive property of tumor cells. Cell membrane-associated MMP-2 activation is one of the challenging areas in tumor biology. In the present communication, we studied the membrane dependent activation of MMP-2 in SiHa cells. METHODS: Activation of pro-MMP-2 by membrane fraction, membrane extract, and live SiHa cells was studied by gelatin zymography. The role of MT1-MMP in MMP-2 activation was studied by incubating SiHa cells and cell membrane fractions with anti-MT1-MMP antibody. RESULTS: Activation of purified pro-MMP-2 by membrane fraction isolated from SiHa cells, by SiHa cell membrane extract and by SiHa cells, pro-MMP-2 from Con A treated HT-1080 conditioned medium by SiHa cells, and pro-MMP-2 from serum free culture medium of SiHa cells and cervical tissue homogenate by SiHa cell membrane fraction was shown by gelatin zymography. SiHa membrane fraction activated only pro-MMP-2 from purified MMP-9/MMP-2 mixture, indicating that the activation is specific for MMP-2. Inhibition of MMP-2 activation in the presence of anti-MT1-MMP antibody strongly indicated that the cell membrane mediated MMP-2 activation is MT1-MMP dependent. Immunocytochemistry of SiHa cells demonstrated expression of MT1-MMP at focal points. Invasion assay showed that invasiveness of anti-MT1-MMP antibody treated SiHa cells through Matrigel was drastically reduced compared to control SiHa cells. CONCLUSIONS: Our findings furnish an example of the cell membrane-associated MT1-MMP mediated MMP-2 activation in SiHa cells and suggest that this MT1-MMP mediated MMP-2 activation is of importance in tumor invasion and metastasis. This MT1-MMP mediated MMP-2 activation on tumor cell surface could be a realistic target for managing metastatic diseases.


Assuntos
Membrana Celular/enzimologia , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Fracionamento Celular , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Humanos , Metaloproteinase 14 da Matriz/análise , Metaloproteinase 14 da Matriz/fisiologia , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...