Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(8): e0071524, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39037271

RESUMO

The bacterial predator Bdellovibrio bacteriovorus is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes fliL or motA were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms. The variants showed large transcriptional shifts in genes related to flagella, prey-invasion, and cyclic-di-GMP (CdG), as well as large changes in CdG cellular concentration relative to the H-D parent. The introduction of the parental fliL allele resulted in a full reversion to the H-D phenotype, but we propose that specific interactions between stator proteins prevented functional complementation by fliL paralogs. In contrast, specific mutations in a pilus-associated protein (Bd0108) mutant background were necessary for biofilm formation, including secretion of extracellular DNA (eDNA), proteins, and polysaccharides matrix components. Remarkably, fliL disruption strongly reduced biofilm development. All H-I variants grew similarly without prey, showed a strain-specific reduction in predatory ability in prey suspensions, but maintained similar high efficiency in prey biofilms. Population-wide allele sequencing suggested additional routes to host independence. Thus, stator and invasion pole-dependent signaling control the H-D and the H-I biofilm-forming phenotypes, with single mutations overriding prey requirements, and enabling shifts from obligate to facultative predation, with potential consequences on community dynamics. Our findings on the facility and variety of changes leading to facultative predation also challenge the concept of Bdellovibrio and like organisms being obligate predators. IMPORTANCE: The ability of bacteria to form biofilms is a central research theme in biology, medicine, and the environment. We show that cultures of the obligate (host-dependent) "solitary" predatory bacterium Bdellovibrio bacteriovorus, which cannot replicate without prey, can use various genetic routes to spontaneously yield host-independent (H-I) variants that grow axenically (as a single species, in the absence of prey) and exhibit various surface attachment phenotypes, including biofilm formation. These routes include single mutations in flagellar stator genes that affect biofilm formation, provoke motor instability and large motility defects, and disrupt cyclic-di-GMP intracellular signaling. H-I strains also exhibit reduced predatory efficiency in suspension but high efficiency in prey biofilms. These changes override the requirements for prey, enabling a shift from obligate to facultative predation, with potential consequences on community dynamics.


Assuntos
Proteínas de Bactérias , Bdellovibrio bacteriovorus , Biofilmes , Flagelos , Biofilmes/crescimento & desenvolvimento , Flagelos/genética , Flagelos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/fisiologia , Mutação , Regulação Bacteriana da Expressão Gênica , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo
2.
Microbiol Res ; 260: 127021, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35447487

RESUMO

Alcohol acetyltransferases (AATs) are a group of enzymes that catalyze the formation of esters from different alcohols and acetyl-CoA. However, these enzymes are not well characterized with regard to synthesis of antifungal compounds. The present study aims to investigate the AAT enzyme from Geotrichum candidum PF005, an endophytic yeast-like fungus that emits fruity scented antifungal volatiles, primarily comprising of acetate esters. After PCR-based cloning of the GcAAT gene, the encoded enzyme was characterized structurally through in silico methods and functionally via heterologous expression in Saccharomyces cerevisiae. In native host, the single copy GcAAT gene exhibited induced expression upon supplementation with metabolic precursors, like L-leucine (Leu) or α-ketoisocaproate (α-KIC). Docking studies using the modelled structure of GcAAT revealed differential but favourable binding interactions for three alcohol substrates (i.e., isoamyl alcohol, isobutyl alcohol and 2-phenylethanol) and the co-substrate acetyl-CoA. Binding sites for both substrate and co-substrate are found to be located inside a tunnel identified in the structure, wherein the H208 of the acetyltransferase conserved motif HXXXD was found at a hydrogen bond distance from the substrate. Functional complementation of GcAAT in S. cerevisiae AAT knockout strain caused 32% decrease in dry biomass weight of the test phytopathogenic fungus, Rhizoctonia solani as compared to the control (AAT knockout strain with empty plasmid) after 72 h of incubation due to the emitted volatiles. When the transformed yeast cells were fed with Leu and α-KIC, the relative abundance of the isoamyl acetate ester increased by 21% and 48%, respectively as compared to the control (without precursor). Further analysis documented that volatiles from α-KIC fed GcAAT transformant exhibited 58% higher antifungal activity against the test fungus R. solani than the control, engendered by increased oxidative stress that led to distorted mycelial morphology and increased hyphal branching. Together, the augmented antifungal effect displayed by the GcAAT expressing S. cerevisiae AAT knockout strain is clearly attributable to the acetate esters, especially isoamyl acetate, which are inherently produced in endophytic G. candidum PF005 as antifungal volatiles.


Assuntos
Acetiltransferases , Ésteres , Geotrichum , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Álcoois/metabolismo , Antifúngicos/farmacologia , Ésteres/metabolismo , Geotrichum/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Biotechnol Adv ; 53: 107722, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33631187

RESUMO

With the increasing demand to develop a renewable and sustainable biolipid feedstock, several species of non-conventional oleaginous yeasts are being explored. Apart from the platform oleaginous yeast Yarrowia lipolytica, the understanding of metabolic pathway and, therefore, exploiting the engineering prospects of most of the oleaginous species are still in infancy. However, in the past few years, enormous efforts have been invested in Rhodotorula, Rhodosporidium, Lipomyces, Trichosporon, and Candida genera of yeasts among others, with the rapid advancement of engineering strategies, significant improvement in genetic tools and techniques, generation of extensive bioinformatics and omics data. In this review, we have collated these recent progresses to make a detailed and insightful summary of the major developments in metabolic engineering of the prominent oleaginous yeast species. Such a comprehensive overview would be a useful resource for future strain improvement and metabolic engineering studies for enhanced production of lipid and lipid-derived chemicals in oleaginous yeasts.


Assuntos
Basidiomycota , Yarrowia , Lipídeos , Engenharia Metabólica , Yarrowia/genética , Leveduras/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-32320743

RESUMO

Proteins residing in lipid droplets (LDs) of organisms exhibit diverse physiological roles. Since the LD proteins of yeasts are largely unexplored, we have identified a putative LD protein gene, CtLDP1 in the oleaginous yeast Candida tropicalis SY005 and characterized its function. The increased lipid accumulation in SY005 could be correlated with enhanced (~2.67-fold) expression of the CtLDP1 after low-nitrogen stress. The N-terminal transmembrane domain similar to perilipin proteins and the amphipathic α-helices predicted in silico, presumably aid in targeting the CtLDP1 to LD membranes. Heterologous expression of CtLDP1-mCherry fusion in Saccharomyces cerevisiae revealed localization in LDs, yet the expression of CtLDP1 did not show significant effect on LD formation in transformed cells. Molecular docking showed favourable interactions of the protein with sterol class of molecules, but not with triacylglycerol (TAG); and this was further experimentally verified by co-localization of the mCherry-tagged protein in TAG-deficient (but steryl ester containing) LDs. While oleic acid supplementation caused coalescence of LDs into supersized ones (average diameter = 1.19 ± 0.12 µm; n = 160), this effect was suppressed due to CtLDP1 expression, and the cells mostly exhibited numerous smaller LDs (average diameter = 0.46 ± 0.05 µm; n = 160). Moreover, CtLDP1 expression in pet10Δ knockout strain of S. cerevisiae restored multiple LD formation, indicating functional complementation of the protein. Overall, this study documents functional characterization of an LD-stabilizing protein from an oleaginous strain of Candida genus for the first time, and provides insights on the characteristics of LD proteins in oleaginous yeasts for future metabolic engineering.


Assuntos
Candida tropicalis/química , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Gotículas Lipídicas/metabolismo , Candida tropicalis/citologia , Candida tropicalis/metabolismo , Proteínas Fúngicas/genética , Simulação de Acoplamento Molecular , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...