Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetol Metab Syndr ; 16(1): 95, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664841

RESUMO

Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin resistance as well as ß-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to triaging of patients based on increasing risk factor of the clinicopathological condition.

2.
Front Mol Biosci ; 11: 1330144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455764

RESUMO

Breast cancer is one of the top two reproductive cancers responsible for high rates of morbidity and mortality among women globally. Despite the advancements in the treatment of breast cancer, its early diagnosis remains a challenge. Recent evidence indicates that despite the adroit use of numerous strategies to facilitate rapid and precision-oriented screening of breast cancer at the community level through the use of mammograms, Fine-needle aspiration cytology (FNAC) and biomarker tracking, no strategy has been unequivocally accepted as a gold standard for facilitating rapid screening for disease. This necessitates the need to identify novel strategies for the detection and triage of breast cancer lesions at higher rates of specificity, and sensitivity, whilst taking into account the epidemiologic and social-demographic features of the patients. Recent shreds of evidence indicate that exosomes could be a robust source of biomaterial for the rapid screening of breast cancer due to their high stability and their presence in body fluids. Increasing evidence indicates that the Exosomal microRNAs- play a significant role in modifying the tumour microenvironment of breast cancers, thereby potentially aiding in the proliferation, invasion and metastasis of breast cancer. In this review, we summarize the role of ExomiRs in the tumour microenvironment in breast cancer. These ExomiRs can also be used as candidate biomarkers for facilitating rapid screening and triaging of breast cancer patients for clinical intervention.

3.
Front Endocrinol (Lausanne) ; 14: 1097337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843574

RESUMO

Exosomal microRNA (ExomiRs) serves as potential cargo molecules responsible for post-translation of gene expression and intracellular communication playing a vital role in acting as clinically relevant prognostic biomarkers for identifying pregnancy-associated complications in patients. ExomiRs are associated with Gestational Diabetes Mellitus (GDM) as potential targets for understanding the pathophysiology of beta-cell dysfunction. ExomiRs (ExomiR 122, ExomiR 16-5p, ExomiR 215-5p, ExomiR 450b-3p, ExomiR 122-5p) aid to act as biomarkers and regulate the progression of diabetes and its related complication. These ExomiRshave been reported to interfere with the regulation of various genes such as ZEB2, IRS1, IRS2, GLUT1, GLUT4, etc. and inhibition of several pathways like PI3K/AKT, Wnt, and mTOR signaling pathways leading to the modulation in the development of GDM affecting the clinical and pathological features of women. These ExomiRs have also been associated with other pregnancy-associated complications, including preeclampsia, hypothyroidism, pregnancy loss, and ectopic pregnancies. On the other hand, overexpression of certain ExomiRs such as Exomir-515-5p, ExomiR-221, and ExomiR-96 serve a regulatory role in overcoming insulin resistance. Taken together, the current review focuses on the prospective capabilities of ExomiRs for diagnosis and clinical prognosis of GDM women with respect to pregnancy outcomes.


Assuntos
Diabetes Gestacional , MicroRNAs , Complicações na Gravidez , Gravidez , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Resultado da Gravidez , Prognóstico , Fosfatidilinositol 3-Quinases , Estudos Prospectivos , Biomarcadores
4.
Front Mol Biosci ; 10: 1330327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38333633

RESUMO

Biological derivatives and their effective influence on psychological parameters are increasingly being deciphered to better understand body-mind perspectives in health. Recent evidence suggests that the gut-brain immune axis is an attractive theragnostic target due to its innate capacity to excite the immune system by activating monocyte exosomes. These exosomes induce spontaneous alterations in the microRNAs within the brain endothelial cells, resulting in an acute inflammatory response with physiological and psychological sequelae, evidenced by anxiety and depression. Exploring the role of the stress models that influence anxiety and depression may reflect on the effect and role of exosomes, shedding light on various physiological responses that explain the contributing factors of cardiovascular disorders. The pathophysiological effects of gut-microbiome dysbiosis are further accentuated by alterations in the glucose metabolism, leading to type 2 diabetes, which is known to be a risk factor for cardiovascular disorders. Understanding the role of exosomes and their implications for cell-to-cell communication, inflammatory responses, and neuronal stress reactions can easily provide insight into the gut-brain immune axis and downstream cardiovascular sequelae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...