RESUMO
Jadeite was greatly appreciated by pre-Hispanic cultures in Mesoamerica. Despite its importance, knowledge of its mining sources was lost after the Spanish conquest. In the 1950s the only confirmed jadeite deposits in Mesoamerica were found in the Motagua River Fault (MRF), Guatemala. The aim of this study is to present a methodology that is appropriate for the study of archeological jadeite objects using non-destructive spectroscopic and micro-ion beam analysis techniques. This methodology has been applied to perform mineral, elemental, and luminescence characterization of five jadeite samples from the MRF, with white, lilac, and green colors. Fourier-transformed infrared spectroscopy and X-ray diffraction analysis confirmed the presence of jadeite, albite, and omphacite as the main mineral phases in the samples. Elemental maps using particle-induced X-ray emission (PIXE) with a nuclear microprobe and elemental concentration analysis from individual mineral grains using micro-PIXE coupled with micro-ionoluminescence (IL) allowed the detection of minor feldspar, titanite, and grossular mineral contents. Distinctive features from the mineral, elemental, and luminescence characterization have been found that allow the identification of these five jadeite samples.
RESUMO
Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'.