Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1284262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089970

RESUMO

Cryogenic magnetoencephalography (MEG) enhances the presurgical assessment of refractory focal epilepsy (RFE). Optically pumped magnetometers (OPMs) are cryogen-free sensors that enable on-scalp MEG recordings. Here, we investigate the application of tri-axial OPMs [87Rb (Rb-OPM) and 4He gas (He-OPM)] for the detection of interictal epileptiform discharges (IEDs). IEDs were recorded simultaneously with 4 tri-axial Rb- and 4 tri-axial He-OPMs in a child with RFE. IEDs were identified visually, isolated from magnetic background noise using independent component analysis (ICA) and were studied following their optimal magnetic field orientation thanks to virtual sensors. Most IEDs (>1,000) were detectable by both He- and Rb-OPM recordings. IEDs were isolated by ICA and the resulting magnetic field oriented mostly tangential to the scalp in Rb-OPMs and radial in He-OPMs. Likely due to differences in sensor locations, the IED amplitude was higher with Rb-OPMs. This case study shows comparable ability of Rb-OPMs and He-OPMs to detect IEDs and the substantial benefits of triaxial OPMs to detect IEDs from different sensor locations. Tri-axial OPMs allow to maximize spatial brain sampling for IEDs detection with a limited number of sensors.

2.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932045

RESUMO

Magnetoencephalography based on superconducting quantum interference devices (SQUIDs) has been shown to improve the diagnosis and surgical treatment decision for presurgical evaluation of drug-resistant epilepsy. Still, its use remains limited because of several constraints such as cost, fixed helmet size, and the obligation of immobility. A new generation of sensors, optically pumped magnetometers (OPMs), could overcome these limitations. In this study, we validate the ability of helium-based OPM (4He-OPM) sensors to record epileptic brain activity thanks to simultaneous recordings with intracerebral EEG [stereotactic EEG (SEEG)]. We recorded simultaneous SQUIDs-SEEG and 4He-OPM-SEEG signals in one patient during two sessions. We show that epileptic activities on intracerebral EEG can be recorded by OPMs with a better signal-to noise ratio than classical SQUIDs. The OPM sensors open new venues for the widespread application of magnetoencephalography in the management of epilepsy and other neurologic diseases and fundamental neuroscience.


Assuntos
Epilepsia , Hélio , Humanos , Animais , Magnetoencefalografia , Epilepsia/diagnóstico , Eletroencefalografia , Decapodiformes , Encéfalo
3.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905007

RESUMO

MagnetoEncephaloGraphy (MEG) provides a measure of electrical activity in the brain at a millisecond time scale. From these signals, one can non-invasively derive the dynamics of brain activity. Conventional MEG systems (SQUID-MEG) use very low temperatures to achieve the necessary sensitivity. This leads to severe experimental and economical limitations. A new generation of MEG sensors is emerging: the optically pumped magnetometers (OPM). In OPM, an atomic gas enclosed in a glass cell is traversed by a laser beam whose modulation depends on the local magnetic field. MAG4Health is developing OPMs using Helium gas (4He-OPM). They operate at room temperature with a large dynamic range and a large frequency bandwidth and output natively a 3D vectorial measure of the magnetic field. In this study, five 4He-OPMs were compared to a classical SQUID-MEG system in a group of 18 volunteers to evaluate their experimental performances. Considering that the 4He-OPMs operate at real room temperature and can be placed directly on the head, our assumption was that 4He-OPMs would provide a reliable recording of physiological magnetic brain activity. Indeed, the results showed that the 4He-OPMs showed very similar results to the classical SQUID-MEG system by taking advantage of a shorter distance to the brain, despite having a lower sensitivity.


Assuntos
Hélio , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Voluntários Saudáveis , Encéfalo/fisiologia , Campos Magnéticos
4.
Phys Chem Chem Phys ; 24(10): 6107-6125, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212691

RESUMO

The nanoscale structure of molecular assemblies plays a major role in many (µ)-biological mechanisms. Molecular crystals are one of the most simple of these assemblies and are widely used in a variety of applications from pharmaceuticals and agrochemicals, to nutraceuticals and cosmetics. The collective vibrations in such molecular crystals can be probed using terahertz spectroscopy, providing unique characteristic spectral fingerprints. However, the association of the spectral features to the crystal conformation, crystal phase and its environment is a difficult task. We present a combined computational-experimental study on the incorporation of water in lactose molecular crystals, and show how simulations can be used to associate spectral features in the THz region to crystal conformations and phases. Using periodic DFT simulations of lactose molecular crystals, the role of water in the observed lactose THz spectrum is clarified, presenting both direct and indirect contributions. A specific experimental setup is built to allow the controlled heating and corresponding dehydration of the sample, providing the monitoring of the crystal phase transformation dynamics. Besides the observation that lactose phases and phase transformation appear to be more complex than previously thought - including several crystal forms in a single phase and a non-negligible water content in the so-called anhydrous phase - we draw two main conclusions from this study. Firstly, THz modes are spread over more than one molecule and require periodic computation rather than a gas-phase one. Secondly, hydration water does not only play a perturbative role but also participates in the facilitation of the THz vibrations.


Assuntos
Espectroscopia Terahertz , Vibração , Conformação Molecular , Espectroscopia Terahertz/métodos , Água/química
5.
Phys Rev Lett ; 114(6): 063003, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723217

RESUMO

Filaments produced in air by intense femtosecond laser pulses emit UV luminescence from excited N(2) and N(2)(+) molecules. We report on a strong dependence at high intensities (I≥1.4×10(14) W/cm(2)) of this luminescence with the polarization state of the incident laser pulses. We attribute this effect to the onset of new impact excitation channels from energetic electrons produced with circularly polarized laser pulses above a threshold laser intensity.

6.
Opt Express ; 22(11): 12750-9, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921470

RESUMO

We report on strong backward stimulated emission at 337 nm in nitrogen gas pumped by circularly polarized femtosecond laser pulses at 800 nm. A distinct dependence of the backward UV spectrum on pump laser polarization and intensity is observed, pointing to the occurrence of backward amplified spontaneous emission inside filaments. We attribute the population inversion to inelastic collision between the free electrons produced by the pump laser and neutral N2 molecules. The addition of oxygen molecules is detrimental for the gain, reducing it to near threshold at atmospheric concentration.

7.
Opt Lett ; 39(7): 1725-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686589

RESUMO

We report on the lasing action of atmospheric air pumped by an 800 nm femtosecond laser pulse with peak power up to 4 TW. Lasing emission at 428 nm increases rapidly over a small range of pump laser power, followed by saturation above ∼1.5 TW. The maximum lasing pulse energy is measured at 2.6 µJ corresponding to an emission power in the MW range, while a maximum conversion efficiency of 3.5×10(-5) is measured at moderate pump pulse energy. The optical gain inside the filament plasma is estimated to be in excess of 0.7/cm. Lasing emission shows a doughnut profile, reflecting the spatial distribution of the pump-generated white-light continuum that acts as a seed for the lasing. We attribute the pronounced saturation to the defocusing of the seed in the plasma amplifying region and to the saturation of the seed intensity.

8.
Opt Express ; 22(24): 29964-77, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606926

RESUMO

Recently, S. Mitryukovskiy et al. presented experimental evidence showing that backward Amplified Spontaneous Emission (ASE) at 337 nm can be obtained from plasma filaments in nitrogen gas pumped by circularly polarized 800 nm femtosecond pulses (Opt. Express, 22, 12750 (2014)). Here, we report that a seed pulse injected in the backward direction can be amplified by ~200 times inside this plasma amplifier. The amplified 337 nm radiation can be either linearly or circularly polarized, dictated by the seeding pulse, which is distinct from the non-polarized nature of the ASE. We performed comprehensive measurements of the spatial profile, optical gain dynamics, and seed pulse energy dependence of this amplification process. These measurements allow us to deduce the pulse duration of the ASE and the amplified 337 nm radiation as well as the corresponding laser intensity inside the plasma amplifier. It indicates that the amplification is largely in the unsaturated regime and that further improvement of laser energy is possible. Moreover, we observed optical gain in plasma created in ambient air. This represents an important step towards future applications exploiting backward lasing for remote atmospheric sensing.


Assuntos
Ar , Lasers , Luz , Gases em Plasma/química , Tecnologia de Sensoriamento Remoto , Amplificadores Eletrônicos , Termodinâmica , Fatores de Tempo
9.
Phys Rev Lett ; 110(9): 097601, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496745

RESUMO

We report on a novel nonlinear optical phenomenon, coined as ciliary white light, during laser ablation of transparent dielectrics. It is observed in 14 different transparent materials including glasses, crystals, and polymers. This phenomenon is also universal with respect to laser polarization, pulse duration, and focusing geometry. We interpret its formation in terms of the nonlinear diffraction of the laser generated white light by the ablation crater covered by nanostructures. It carries rich information on the damage profile and morphology dynamics of the ablated surface, providing a real time in situ observation of the laser ablation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...