Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(6): pgae213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881843

RESUMO

Intrinsic impediments, namely weak mechanical strength, low ionic conductivity, low electrochemical performance, and stability have largely inhibited beyond practical applications of hydrogels in electronic devices and remains as a significant challenge in the scientific world. Here, we report a biospecies-derived genomic DNA hybrid gel electrolyte with many synergistic effects, including robust mechanical properties (mechanical strength and elongation of 6.98 MPa and 997.42%, respectively) and ion migration channels, which consequently demonstrated high ionic conductivity (73.27 mS/cm) and superior electrochemical stability (1.64 V). Notably, when applied to a supercapacitor the hybrid gel-based devices exhibit a specific capacitance of 425 F/g. Furthermore, it maintained rapid charging/discharging with a capacitance retention rate of 93.8% after ∼200,000 cycles while exhibiting a maximum energy density of 35.07 Wh/kg and a maximum power density of 193.9 kW/kg. This represents the best value among the current supercapacitors and can be immediately applied to minicars, solar cells, and LED lightning. The widespread use of DNA gel electrolytes will revolutionize human efforts to industrialize high-performance green energy.

2.
ACS Appl Mater Interfaces ; 13(7): 8710-8717, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33566560

RESUMO

The conventional synthesis of two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is low yielding and lack the heterojunction interface quality. The chemical vapor deposition (CVD) techniques have achieved high-quality heterostructure interfaces but require a high synthesis temperature (>600 °C) and have a low yield of heterostructures. Therefore, the large scale and high interface quality of TMDC heterojunctions using low-temperature synthesis methods are in demand. Here, high-quality, wafer-scale MoS2 and WS2 heterostructures with 2D interfaces were prepared by a one-step sulfurization of the molybdenum (Mo) and tungsten (W) precursors via plasma-enhanced CVD at a relatively low temperature (150 °C). The 4 inch wafer-scale synthesis of the MoS2-WS2 heterostructures was validated using various spectroscopic and microscopic techniques. Further, the photocurrent generation and photoswitching phenomenon of the so-obtained MoS2-WS2 heterostructures were studied. The photodevice prepared by the MoS2-WS2 heterostructures at 150 °C showed a photoresponsivity of 83.75 mA/W. The excellent photoresponse and faster photoswitching highlight the advantage of MoS2-WS2 heterostructures toward advanced photodetectors.

3.
ACS Appl Mater Interfaces ; 12(20): 23261-23271, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32347702

RESUMO

We investigate the development of gate-modulated tungsten diselenide (WSe2)-based lateral pn-homojunctions for visible and near-infrared photodetector applications via an effective oxygen (O2) plasma treatment. O2 plasma acts to induce the p-type WSe2 for the otherwise n-type WSe2 by forming a tungsten oxide (WOx) layer upon O2 plasma treatment. The WSe2 lateral pn-homojunctions displayed an enhanced photoresponse and resulted in open-circuit voltage (VOC) and short-circuit current (ISC) originating from the pn-junction formed after O2 plasma treatment. We further notice that the amplitude of the photocurrent can be modulated by different gate biases. The fabricated WSe2 pn-homojunctions exhibit greater photoresponse with photoresponsivities (ratio of the photocurrent and incident laser power) of 250 and 2000 mA/W, high external quantum efficiency values (%, total number of charge carriers generated for the number of incident photons on photodetectors) of 97 and 420%, and superior detectivity values (magnitude of detector sensitivity) of 7.7 × 109 and 7.2 × 1010 Jones upon illumination with visible (520 nm) and near-infrared lasers (852 nm), respectively, at low bias (Vg = 0 V and Vd = 1 V) at room temperature, demonstrating very high-performance in the IR region superior to the contending two-dimensional material-based photonic devices. These superior optoelectronic properties are attributed to the junctions induced by O2 plasma doping, which facilitate the effective carrier generation and separation of photocarriers with applied external drain bias upon strong light absorption.

4.
ACS Nano ; 14(5): 5260-5267, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32159938

RESUMO

Owing to its high information density, energy efficiency, and massive parallelism, DNA computing has undergone several advances and made significant contributions to nanotechnology. Notably, arithmetic calculations implemented by multiple logic gates such as adders and subtractors have received much attention because of their well-established logic algorithms and feasibility of experimental implementation. Although small molecules have been used to implement these computations, a DNA tile-based calculator has been rarely addressed owing to complexity of rule design and experimental challenges for direct verification. Here, we construct a DNA-based calculator with three types of building blocks (propagator, connector, and solution tiles) to perform addition and subtraction operations through algorithmic self-assembly. An atomic force microscope is used to verify the solutions. Our method provides a potential platform for the construction of various types of DNA algorithmic crystals (such as flip-flops, encoders, and multiplexers) by embedding multiple logic gate operations in the DNA base sequences.


Assuntos
DNA , Nanotecnologia , Algoritmos , Sequência de Bases , DNA/genética , Lógica
5.
Biosens Bioelectron ; 126: 44-50, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390600

RESUMO

Even though lanthanide ion (Ln3+)-doped DNA nanostructures have been utilized in various applications, they are rarely employed for photovoltage generating devices because of difficulties in designing DNA-based devices that generate voltages under light illumination. Here, we constructed DNA lattices made of synthetic strands and DNA thin films extracted from salmon (SDNA) with single-doping of Nd3+ or Er3+ and co-doping of Nd3+/Er3+ for high performance UV detection. The topological change of the DNA double-crossover (DX) lattices during the course of annealing was estimated from atomic force microscope (AFM) images to find the optimum concentration of Ln3+ ([Ln3+]O). No topological disturbance in DNA DX lattices were observed up to [Ln3+]O, and significant enhancement in the physical properties was obtained at [Ln3+]O. The interactions between Ln3+ and SDNA were examined using spectroscopic methods of UV-visible, Raman, and X-ray photoelectron spectroscopy (XPS). Current and photovoltage measurements for Ln3+-doped SDNA thin films under UV illumination with varying power intensities were conducted. Under UV illumination, the photocurrent and photovoltage of Ln3+-doped SDNA thin films increased with increasing applied external voltages and input power intensities, respectively. In addition, we observed considerable increases in photovoltage responses, i.e., 5-fold increase for Nd3+, 10-fold for Er3+, and 13-fold for Nd3+/ Er3+, compared to the pristine SDNA due to the additional charge carriers generated in Ln3+-doped SDNA thin films. Device performance was measured in terms of photovoltage responsivity and retention characteristics. These phenomena indicate the high stability and substantial endurance characteristics of Ln3+-doped SDNA thin films.


Assuntos
DNA/química , Érbio/química , Nanoestruturas/química , Neodímio/química , Animais , Técnicas Biossensoriais/instrumentação , Cátions/química , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Processos Fotoquímicos , Salmão , Raios Ultravioleta
6.
ACS Biomater Sci Eng ; 5(10): 5015-5023, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455249

RESUMO

DNA incorporated with functional materials has led to development of hybrids with different functionalities. Among the functional materials, metal nanoparticles such as Au, Ag, and Cu (also known as plasmonic nanoparticles [PNPs]), which can exhibit surface plasmon resonance, are good candidates to fabricate useful optoelectronic devices and sensors. Here, we constructed PNP-assorted DNA (PNP-DNA) layers with mono-, hetero-, and mixed-type PNPs formed by successive spin-coating to obtain the required number of layers. Further, structural analysis of PNP-DNA was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The optical evaluation was carried out by Raman, UV-visible, and photoluminescence (PL) spectroscopies followed by measurement of capacitance. Cross-sectional SEM images of DNA single, DNA triple, and PNP-DNA triple layers indicated their thicknesses (i.e., 90, 280, and 395 nm, respectively), while the base pair distance of double helixes (∼0.4 nm) for the PNP-DNA multilayers was measured by XRD. The presence of Ag, Au, and Cu PNPs was confirmed by existence of spin-orbit coupling in the corresponding XPS spectra. The addition of PNPs in DNA multilayers caused significant enhancement in the intensities of Raman bands (especially in the range of 1200-1850 cm-1) due to Raman resonance. UV-vis absorption and PL demonstrated stacking-order-dependent and layer-dependent light absorption and energy transfer (observed as quenching of fluorescence between PNPs and DNA), respectively. We observed n-type semiconducting behavior with a relatively higher dielectric constant for a PNP-assorted DNA single layer at a low frequency of 5 kHz. The dielectric constants of all samples decreased exponentially with increased frequency. Upon addition of PNPs, enhancement in the dielectric constant as well as capacitance was noted. Consequently, the simple fabrication method used in this study can be adopted to construct various nanomaterial-assorted DNA multilayers whose specific functionalities may be controlled with high efficiency.

7.
Colloids Surf B Biointerfaces ; 175: 212-220, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530233

RESUMO

Deoxyribonucleic acid (DNA) and lanthanide ions (Ln3+) exhibit exceptional optical properties that are applicable to the development of nanoscale devices and sensors. Although DNA nanostructures and Ln3+ ions have been investigated for use in the current state of technology for more than a few decades, researchers have yet to develop DNA and Ln3+ based ultra-violet (UV) photodetectors. Here, we fabricate Ln3+ (such as holmium (Ho3+), praseodymium (Pr3+), and ytterbium (Yb3+))‒doped double crossover (DX)‒DNA lattices through substrate-assisted growth and salmon DNA (SDNA) thin films via a simple drop-casting method on oxygen (O2) plasma-treated substrates for high performance UV photodetectors. Topological (AFM), optical (UV-vis absorption and FTIR), spectroscopic (XPS), and electrical (I‒V and photovoltage) measurements of the DX‒DNA and SDNA thin films doped with various concentrations of Ln3+ ([Ln3+]) are explored. From the AFM analysis, the optimum concentrations of various Ln3+ ([Ln3+]O) are estimated (where the phase transition of Ln3+‒doped DX‒DNA lattices takes place from crystalline to amorphous) as 1.2 mM for Ho3+, 1.5 mM for Pr3+, and 1.5 mM for Yb3+. The binding modes and chemical states are evaluated through optical and spectroscopic analysis. From UV-vis absorption studies, we found that as the [Ln3+] was increased, the absorption intensity decreased up to [Ln3+]O, and increased above [Ln3+]O. The variation in FTIR peak intensities in the nucleobase and phosphate regions, and the changes in XPS peak intensities and peak positions detected in the N 1 s and P 2p core spectra of Ln3+‒doped SDNA thin films clearly indicate that the Ln3+ ions are properly bound between the bases (through chemical intercalation) and to the phosphate backbone (through electrostatic interactions) of the DNA molecules. Finally, the I‒V characteristics and time-dependent photovoltage of Ln3+‒doped SDNA thin films are measured both in the dark and under UV LED illuminations (λLED = 382 nm) at various illumination powers. The photocurrent and photovoltage of Ln3+‒doped SDNA thin films are enhanced up to the [Ln3+]O compared to pristine SDNA due to the charge carriers generated from both SDNA and Ln3+ ions upon the absorption of light. From our observations, the photovoltages as function of illumination power suggest higher responsivities, and the photovoltages as function of time are almost constant which indicates the stability and retention characteristics of the Ln3+‒doped SDNA thin films. Hence, our method which provides an efficient doping of Ln3+ into the SDNA with a simple fabrication process might be useful in the development of high-performance optoelectronic devices and sensors.


Assuntos
DNA/química , Íons/química , Elementos da Série dos Lantanídeos/química , Nanoestruturas/química , Fotoquímica/instrumentação , Raios Ultravioleta , Animais , Sequência de Bases , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , DNA/genética , Microscopia de Força Atômica , Fotoquímica/métodos , Espectroscopia Fotoeletrônica , Reprodutibilidade dos Testes , Salmão/genética , Espectroscopia de Infravermelho com Transformada de Fourier
8.
ACS Appl Mater Interfaces ; 10(51): 44290-44300, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30550272

RESUMO

DNA nanotechnology has laid a platform to construct a variety of custom-shaped nanoscale objects for functionalization of specific target materials to achieve programmability and molecular recognition. Herein, we prepared DNA nanostructures [namely, synthetic DNA rings (RDNA) and DNA duplexes extracted from salmon (SDNA)] containing metal ions (M2+) such as Cu2+, Ni2+, and Zn2+ as payloads for delivery to exterminate highly pathologic hospital bacterial strains (e.g., Escherichia coli and Bacillus subtilis) and prostate cancer cells (i.e., PC3, LNCaP, TRAMP-C1, 22Rv1, and DU145). Morphologies of these M2+-doped RDNA were visualized using atomic force microscopy. Interactions between M2+ and DNA were studied using UV-vis and Fourier transform infrared spectroscopy. Quantitative composition and chemical changes in DNA without or with M2+ were obtained using X-ray photoelectron spectroscopy. In addition, M2+-doped DNA complexes were subjected to antibacterial activity studies. They showed no bacteriostatic or bactericidal effects on bacterial strains used. Finally, in vitro cellular toxicity study was conducted to evaluate the effect of pristine DNA and M2+-doped DNA complexes on prostate cancer cells. Cytotoxicities conferred by M2+-doped DNA complexes for most cell lines were significantly higher than those of M2+ without DNA. Cellular uptake of these complexes was confirmed by fluorescence microscopy using PhenGreen FL indicator. On the basis of our observations, DNA nanostructures can be used as safe and efficient nanocarriers for delivery of therapeutics. They have enhanced therapeutic window than bare metals.


Assuntos
Antibacterianos , Bacillus subtilis/crescimento & desenvolvimento , Complexos de Coordenação , DNA , Portadores de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanoestruturas , Neoplasias da Próstata , Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , DNA/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Masculino , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
9.
Sci Rep ; 8(1): 14929, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297802

RESUMO

DNA nanotechnology can be used to create intricate DNA structures due to the ability to direct the molecular assembly of nanostructures through a bottom-up approach. Here, we propose nanocarriers composed of both synthetic and natural DNA for drug delivery. The topological, optical characteristics, and interaction studies of Cu2+/Ni2+/Zn2+-curcumin-conjugated DNA complexes were studied using atomic force microscopy (AFM), UV-vis spectroscopy, Fourier transform infrared and mass spectroscopy. The maximum release of metallo-curcumin conjugates from the DNA complexes, triggered by switching the pH, was found in an acidic medium. The bacterial growth curves of E. coli and B. subtilis displayed a prolonged lag phase when tested with the metallo-curcumin-conjugated DNA complexes. We also tested the in vitro cytotoxicity of the metallo-curcumin-conjugated DNA complexes to prostate cancer cells using an MTS assay, which indicated potent growth inhibition of the cells. Finally, we studied the cellular uptake of the complexes, revealing that DNA complexes with Cu2+/Ni2+-curcumin exhibited brighter fluorescence than those with Zn2+-curcumin.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , DNA/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Masculino , Metais/química , Metais/farmacologia , Modelos Moleculares , Nanoconjugados/química
10.
ACS Nano ; 12(5): 4369-4377, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29683650

RESUMO

Although structural DNA nanotechnology is a well-established field, computations performed using DNA algorithmic self-assembly is still in the primitive stages in terms of its adaptability of rule implementation and experimental complexity. Here, we discuss the feasibility of constructing an M-input/ N-output logic gate implemented into simple DNA building blocks. To date, no experimental demonstrations have been reported with M > 2 owing to the difficulty of tile design. To overcome this problem, we introduce a special tile referred to as an operator. We design appropriate binding domains in DNA tiles, and we demonstrate the growth of DNA algorithmic lattices generated by eight different rules from among 256 rules in a 3-input/1-output logic. The DNA lattices show simple, linelike, random, and mixed patterns, which we analyze to obtain errors and sorting factors. The errors vary from 0.8% to 12.8% depending upon the pattern complexity, and sorting factors obtained from the experiment are in good agreement with simulation results within a range of 1-18%.


Assuntos
Algoritmos , DNA/química , Microscopia de Força Atômica
11.
ACS Biomater Sci Eng ; 4(10): 3617-3623, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33450799

RESUMO

The ultimate goal of DNA computing is to store information at higher density and solve complex problems with less computational time and minimal error. Most algorithmic DNA lattices have been constructed using the free-solution growth (FSG) annealing method, and hairpin-embedded DNA rule tiles have been introduced in most algorithmic implementations to differentiate 0- and 1-bit information. Here, we developed streptavidin (SA)-decorated algorithmic COPY (produced line-like patterns with biotinylated 1-bit rule tiles) and XOR (triangle-like patterns) lattices constructed by a substrate-assisted growth (SAG) method and FSG. SA decoration in algorithmic lattices provides an efficient platform for visualizing bit information, and the SAG method in algorithmic assembly offers full coverage of algorithmic lattices on a substrate with a relatively lower DNA concentration than previous methods. The algorithmic COPY and XOR lattices assembled with various ratios of 0- and 1-bit rule tiles were verified by atomic force microscopy. We found that even asymmetric DNA patterns produced by certain algorithmic logic gates could be easily constructed by SAG. Finally, we evaluated sorting factors and error rates of algorithmic COPY and XOR lattices to determine the bit population and quality of the algorithmic assembly. Because of the catalytic effect of the substrate, the sorting factor of algorithmic DX-DNA lattices did not greatly influence the specific rules (i.e., COPY and XOR logic gates) annealed by SAG. Additionally, we found that the overall error rates of algorithmic DX-DNA lattices prepared by the FSG and SAG methods were low, within the range of 1-3%. Hence, the self-assembled algorithmic patterns generated with DNA molecules may serve as a scaffold for molecular demultiplexing circuits and computing.

12.
Nanotechnology ; 28(40): 405703, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28820741

RESUMO

We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ∼[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ∼[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA complex.


Assuntos
DNA/química , Nanotecnologia/métodos , Nióbio/química , Animais , Campos Eletromagnéticos , Medições Luminescentes , Membranas Artificiais , Microscopia de Força Atômica , Nanotecnologia/instrumentação , Espectroscopia Fotoeletrônica , Gases em Plasma/química , Salmão
13.
Colloids Surf B Biointerfaces ; 135: 677-681, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26340356

RESUMO

We present two free-solution annealed DNA nanostructures consisting of either cross-tile CT1 or CT2. The proposed nanostructures exhibit two distinct structural morphologies, with one-dimensional (1D) nanotubes for CT1 and 2D nanolattices for CT2. When we perform mica-assisted growth annealing with CT1, a dramatic dimensional change occurs where the 1D nanotubes transform into 2D nanolattices due to the presence of the substrate. We assessed the coverage percentage of the 2D nanolattices grown on the mica substrate with CT1 and CT2 as a function of the concentration of the DNA monomer. Furthermore, we fabricated a scaffold cross-tile (SCT), which is a new design of a modified cross-tile that consists of four four-arm junctions with a square aspect ratio. For SCT, eight oligonucleotides are designed in such a way that adjacent strands with sticky ends can produce continuous arms in both the horizontal and vertical directions. The SCT was fabricated via free-solution annealing, and self-assembled SCT produces 2D nanolattices with periodic square cavities. All structures were observed via atomic force microscopy. Finally, we fabricated divalent nickel ion (Ni(2+))- and trivalent dysprosium ion (Dy(3+))-modified 2D nanolattices constructed with CT2 on a quartz substrate, and the ion coordinations were examined via Raman spectroscopy.


Assuntos
DNA/química , Nanoestruturas , Análise Espectral Raman/métodos , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...