Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 23(4): 794-808, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28673372

RESUMO

Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

2.
Nanoscale ; 5(24): 12365-74, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24162721

RESUMO

Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 µm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the thickness dependent conductivity and to determine the percolation threshold film thickness which was found to be about 10 nm (at a volume fraction of ~39%) for a Langmuir-Blodgett film of an average platelet lateral size of 170 ± 40 nm. The electronic behaviour of the material shows more similarities with polycrystalline turbostratic graphite than thin films of reduced graphene oxide, carbon nanotubes, or disordered conducting polymers. While in these systems the conduction mechanism is often dominated by the presence of an energy barrier between conductive and non-conductive regions in the network, in the exfoliated graphene networks the conduction mechanism can be explained by the simple two-band model which is characteristic of polycrystalline graphite.

3.
Science ; 334(6052): 72-5, 2011 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-21980106

RESUMO

Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.

4.
Ultramicroscopy ; 111(8): 1101-10, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21741341

RESUMO

Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms located on the surface of or inside a crystal. Contrast between intensities of an atomic column containing a dopant atom and a pure atomic column in ADF-STEM image depends strongly on specimen parameters and microscope conditions. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms reveal some interesting trends and non-intuitive behaviours in visibility of the dopant atom. The results provide practical guidelines to determine the optimal microscope and specimen conditions to detect a dopant atom in experiment, obtain information about the 3-d location of a dopant atom, and recognize cases where detecting a single dopant atom is not possible.

5.
ACS Nano ; 5(2): 1253-8, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21271739

RESUMO

We report a new, simple, hydrazine-free, high-yield method for producing single-layer graphene sheets. Graphene sheets were formed from graphite oxide by reduction with simple deionized water at 95 °C under atmospheric pressure. Over 65% of the sheets are single graphene layers; the average sheet diameter is 300 nm. We speculate that dehydration of graphene oxide is the main mechanism for oxygen reduction and transformation of C-C bonds from sp(3) to sp(2). The reduction appears to occur in large uniform interconnected oxygen-free patches so that despite the presence of residual oxygen the sp(2) carbon bonds formed on the sheets are sufficient to provide electronic properties comparable to reduced graphene sheets obtained using other methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...