Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 246: 125625, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392906

RESUMO

The major objective of present work was to fabricate poly(hydroxybutyrate) based luminescent films for genuine food packaging applications. These films were synthesized by incorporating varying Chromone (CH) concentrations (5, 10, 15, 20, and 25 wt%) into poly(hydroxybutyrate) (PHB) matrix through solvent-casting. Different characteristics of prepared films were examined using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Mechanical testing, and Time-resolved photoluminescence (TRPL). UV-blocking properties and water vapor permeation were also examined. FTIR spectra indicated the occurrence of hydrogen bonding between PHB and CH. Among all prepared film samples, PHB/CH15 showed maximum tensile strength (22.5 MPa) with enhanced barrier ability against water vapor and UV rays, thermal stability, and luminescent performance. After overall analysis, PHB/CH15 film was selected to investigate its X-ray diffraction, release behavior, DPPH scavenging, and antimicrobial potential. Release kinetics revealed that the cumulative release percentage of CH was higher in fatty acid stimulant. Moreover, results suggested that this film demonstrated antioxidant activity (>55 %) and superior antimicrobial potential against Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Furthermore, packaging of bread samples using PHB/CH15 film demonstrated the complete inhibition of microbial growth in bread up to 10 days of storage and ensure the safety of genuine food products.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Vapor , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Hidroxibutiratos , Antioxidantes/farmacologia , Antioxidantes/química
2.
Int J Biol Macromol ; 233: 123512, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739047

RESUMO

The objective of current study was to develop Poly(hydroxybutyrate) (PHB) based active packaging film with long lasting antimicrobial potential in food-packaging applications. For developing such films, PHB was incorporated with poly(ethylene glycol) (PEG) as a plasticizer, nano-silica (n-Si) as strengthening material and clove essential oil (CEO) as an antimicrobial agent. These solvent-casted films with varying concentration of n-Si (0.5, 1, 1.5, 2 %) and 30 % CEO of total polymer matrix weight i.e., PHB/PEG (90/10) were prepared and studied on the basis of morphological, mechanical, thermal, degradation and antimicrobial behaviours. The presence of CEO and n-Si was confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to investigate homogeneous dispersal of n-Si in polymer matrix. PHB/PEG/CEO/Si 1.0 film was selected as optimized one after mechanical testing and therefore further carried for antimicrobial testing. This selected film extended the shelf-life of brown bread up to 10 days comparable to bread wrapped in polyethylene. This revealed that PHB/PEG/CEO/Si 1.0 exhibited superior antibacterial activity against the food borne microbes i.e., Escherichia coli, Staphylococcus aureus and Aspergillus niger. Our findings indicate that this film improved the shelf-life of packaged bread and has promising features for active food packaging.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleo de Cravo/farmacologia , Syzygium/química , Pão , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Polímeros , Embalagem de Alimentos/métodos , Hidroxibutiratos
3.
Environ Nanotechnol Monit Manag ; 19: 100759, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36447956

RESUMO

The use of face masks aids to stop the transmission of various deadly communicable ailments, and therefore widespread mask wearing habit is advocated by nearly all health organisations including the WHO to curb the COVID-19 pandemic. Recent studies predicted a shocking requirement of masks globally, approximately billions of masks per week in a single country, and maximum of them are disposable masks, which are made up of nonbiodegradable material such as polypropylene. With expanding review on improper masks disposal, it is imperative to perceive this inherent environmental hazard and avert it from resulting in the subsequent problematic situation due to plastic. The shift towards biodegradable biopolymers alternatives such as bacterial cellulose and newly evolving sustainable scientific knowledge would be significant to dealt with upcoming environmental problem. Bacterial cellulose possesses various desirable properties to replace the conventional mask material. This review gives an overview of data about accumulation of waste masks and its potential harm on environment. It also focuses on diverse characteristics of bacterial cellulose which make it suitable material for making mask and the challenges in the way of bacterial cellulose production and their possible solution. The current review also discussed the report on global bacterial cellulose market growth.

4.
Environ Sci Pollut Res Int ; 29(8): 11039-11053, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35022970

RESUMO

Plastic pollution has become a serious transboundary challenge to nature and human health, with estimation of reports published - predicting a twofold increase in plastic waste by 2030. However, due to the COVID-19 pandemic, the excessive use of single-use plastics (including face masks, gloves and personal protective equipment) would possibly exacerbate such forecasts. The transition towards eco-friendly alternatives like bio-based plastics and new emerging sustainable technologies would be vital to deal with future pandemics, even though the use or consumption of plastics has greatly enhanced our quality of life; it is however critical to move towards bioplastics. We cannot deny the fact that bioplastics have some challenges and shortcomings, but still, it is an ideal option for opt. The circular economy is the need of the hour for waste management. Along with all these practices, individual accountability, corporate intervention and government policy are also needed to prevent us from moving from one crisis to the next. Only through cumulative efforts, we will be able to cope up with this problem. This article collected scattered information and data about accumulation of plastic during COVID-19 worldwide. Additionally, this paper illustrates the substitution of petroleum-based plastics with bio-based plastics. Different aspects are discussed, ranging from advantages to challenges in the way of bioplastics.


Assuntos
COVID-19 , Pandemias , Humanos , Plásticos , Qualidade de Vida , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...