Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e34172, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071601

RESUMO

Statement of the problem: Patient stratifications considered the stability of color and treatment longevity are key success of restoration. Daily consumption of colored beverages, such as coffee, tea, and soft drinks, as well as the use of globally consumed materials, such as smokeless tobacco (ST), snuff, Khat, and Yerba mate, can change the color of restorative materials, such as lithium disilicate glass ceramics (LDGC). These changes can ultimately lead to treatment failure. Purpose: This in vitro study aimed to evaluate color changes, translucency, and opalescence of full anatomical LDGC crowns exposed to commonly used and potentially colorant solutions. Materials and methods: Ninety LDGC specimens/crowns were prepared and divided into nine groups according to immersion solution (control, Saudi Coffee, Cola, Khat, Yerba mate, Nescafe, ST Snuff, and Mixed Fruit Juice). The specimens were immersed in colorant solutions for 15 days with alternating twice daily at 37 °C. Color parameters were measured with a spectrophotometer and calculated using two backgrounds (black and white). Data were subjected to ANOVA followed by the Student t-test and Bonferroni test at a significant difference level (α = 0.05). Results: The greatest color change (ΔE*) among groups after immersion was observed in Yerba mate (7.6 ± 1.6). The mean difference of before and after staining within Yerba mate group was 3.14 ± 1.6 (p = 0.001). Translucency mean values of groups after immersion into staining media were ranging between 7.6 ± 1.2 and 9.1 ± 2, showing a slight decrease compared with pre-staining values but was not significantly different. Immersion in Mixed Fruit Juice significantly reduced opalescence (7.4 ± 1.9) compared to (8.8 ± 1.7) before staining. Conclusion: The findings confirm that appropriate user guidance helps to preserve both translucency and opalescence as well as prevent color changes. This can improve patient compliance and promote treatment longevity.

2.
Saudi Dent J ; 36(1): 99-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375385

RESUMO

Background: A major drawback of resin composites is their tendency to accumulate microbial biofilms that can lead to secondary caries. The objective of this study was to compare the mechanical properties and the degree of conversion of commercial resin-based composite materials containing a contact-killing antibacterial agent, dimethylaminohexadecyl methacrylate (DMAHDM), at different concentrations, with a fluoride-releasing composite material. Materials and methods: Four groups were tested: Tetric N Ceram composite material (G1), Tetric Evo Ceram (G2), and Tetric N Ceram with the addition of contact-killing antibacterial agent DMAHDM at concentrations of 3% (G3) and 5% (G4). The mechanical properties, including flexural strength, elastic modulus, and Vickers microhardness and the degree of conversion were investigated. Results: Adding 3 % and 5 % DMAHDM resulted in flexural strength values that were comparable to Tetric Evo Ceram. Tetric N Ceram was comparable to the group containing 3 % DMAHDM (p > 0.05). However, it was significantly greater when compared to Tetric Evo Ceram (93.3 ± 9.4) and 5 % DMAHDM (p < 0.05). Both the elastic modulus and Vickers microhardness values of Tetric N Ceram were significantly higher than those of the other groups (p < 0.05). Furthermore, the elastic modulus of Tetric Evo Ceram showed similar results to groups with 3 % and 5 % DMAHDM. Nevertheless, the Vickers microhardness value is significantly higher when compared to 5 % DMAHDM (0.394 ± 0.021) (p < 0.05) while it was comparable to that of 3 % DMAHDM (0.484 ± 0.016) (p > 0.05). There was no statistically significant difference in the degree of conversion between the groups (p > 0.05). Conclusion: Adding 3% DMAHDM to Tetric N Ceram resulted in flexural strength values that were similar to those of Tetric N Ceram and Tetric Evo Ceram. DMAHDM did not affect the degree of conversion of Tetric N Ceram composite.

3.
J Funct Biomater ; 14(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37504831

RESUMO

OBJECTIVES: Current dental resins exhibit polymerization shrinkage causing microleakage, which has the potential to cause recurrent caries. Our objectives were to create and characterize low-shrinkage-stress (LSS) composites with dimethylaminododecyl methacrylate (DMADDM) as an antibacterial agent to combat recurrent caries. METHODS: Triethylene glycol divinylbenzyl ether and urethane dimethacrylate were used to reduce shrinkage stress. DMADDM was incorporated at different mass fractions (0%, 1.5%, 3%, and 5%). Flexural strength, elastic modulus, degree of conversion, polymerization stress, and antimicrobial activity were assessed. RESULTS: The composite with 5% DMADDM demonstrated higher flexural strength than the commercial group (p < 0.05). The addition of DMADDM in BisGMA-TEGDMA resin and LSS resin achieved clinically acceptable degrees of conversion. However, LSS composites exhibited much lower polymerization shrinkage stress than BisGMA-TEGDMA composite groups (p < 0.05). The addition of 3% and 5% DMADDM showed a 6-log reduction in Streptococcus mutans (S. mutans) biofilm CFUs compared to commercial control (p < 0.001). Biofilm biomass and lactic acid were also substantially decreased via DMADDM (p < 0.05). CONCLUSIONS: The novel LSS dental composite containing 3% DMADDM demonstrated potent antibacterial action against S. mutans biofilms and much lower polymerization shrinkage-stress, while maintaining excellent mechanical characteristics. The new composite is promising for dental applications to prevent secondary caries and increase restoration longevity.

4.
J Dent ; 126: 104312, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184005

RESUMO

OBJECTIVE: In most clinical circumstances, secondary caries at the margin of fixed dental restorations leads to restoration failure and replacement. Accordingly, the objectives of this study were to: (1) develop a novel rechargeable nano-calcium phosphate (NACP) and nano-calcium fluoride (nCaF2) resin-based cement; and (2) investigate their mechanical properties and calcium (Ca), phosphate (P), and fluoride (F) ion release, recharge, and re-release for the first time. METHODS: The cement matrix consisted of pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A-dimethacrylate (EBPADMA) was denoted PEHB. Four cements were fabricated: (1) PEHB+0%NACP+0%nCaF2 (experimental control); (2) PEHB+25%NACP+0%nCaF2, (3) PEHB+0%NACP+25%nCaF2; (4) PEHB+12.5%NACP+12.5% nCaF2. RelyX luting cement was used as a commercial control. Mechanical properties and long-term Ca, P, and F ion release, recharge, and re-release were evaluated. RESULTS: Adding 25% NACP, 25% nCaF2 and adding both 12.5% NACP and 12.5% nCaF2 to the cement matrix presented a significantly higher shear bond strength, flexural strength compared to the commercial control (p < 0.05) with a comparable outcome with no significant different (p > 0.05) compared to experimental control. The film thickness results of all cement groups met the ISO requirement (<50 µm). The resin cement group with both 12.5% NACP and 12.5% nCaF2 successfully released Ca, P, and F ions at 3.1 ± 0.01, 1.1 ± 0.05, and 0.51±0.01 mmol/L respectively. Moreover, it showed the ability to re-release Ca, P, and F ions at 0.62±0.01, 0.12±0.01, and 0.42±0.01 mmol/L respectively. CONCLUSIONS: The resin cement group with both 12.5% NACP and 12.5% nCaF2 demonstrated the advantages of both types of bio-interactive fillers as it could release a higher level of ions than the resin cement with 25%nCAF2 and exhibited a better rechargeability compared to the resin cement with 25%NACP. CLINICAL SIGNIFICANCE: The ability of this novel resin-based cement to release, recharge, and re-release Ca, P, and F ions could be one of the keys to lengthening the survivability of fixed dental restorations. These features could help to reduce the onset of secondary caries by enhancing the remineralization and preventing the demineralization of tooth structures.


Assuntos
Cárie Dentária , Cimentos de Resina , Humanos , Fluoretos , Fluoreto de Cálcio , Glicerol , Fosfatos de Cálcio/química , Metacrilatos/química , Cimentos Dentários/química , Materiais Dentários , Cárie Dentária/prevenção & controle , Biofilmes , Antibacterianos
5.
Dent Mater ; 38(11): 1689-1702, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115699

RESUMO

OBJECTIVE: A low-shrinkage-stress resin-based cement with antibacterial properties could be beneficial to create a cement with lower stress at the tooth-restoration interface, which could help to enhance the longevity of the fixed dental restoration by reducing microleakage and recurrent caries. To date, there has been no report on the development of a low-shrinkage-stress and bio-interactive cement. Therefore, the objectives of this study were to develop a novel low-shrinkage-stress resin-based cement containing dimethylaminohexadecyl methacrylate (DMAHDM) and investigate the mechanical and antibacterial properties for the first time. METHODS: The monomers urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) were combined and denoted as UV resin. Three cements were fabricated: (1) UV+ 0%DMAHDM (experimental control); (2) UV+ 3%DMAHDM, (3) UV+ %5DMAHDM. RelyX Ultimate cement was used as commercial control. Mechanical properties and Streptococcus mutans (S. mutans) biofilms growth on cement were evaluated. RESULTS: The novel bio-interactive cement demonstrated excellent antibacterial and mechanical properties. Compared to commercial and experimental controls, adding DMAHDM into the UV cement significantly reduced colony forming unit (CFU) counts by approximately 7 orders of magnitude, metabolic activities from 0.29 ± 0.03 A540/cm2 to 0.01 ± 0.01 A540/cm2, and lactic acid production from 22.3 ± 0.74 mmol/L to 1.2 ± 0.27 mmol/L (n = 6) (p < 0.05). The low-shrinkage-stress cement demonstrated a high degree of conversion of around 70 %, while reducing the shrinkage stress by approximately 60%, compared to a commercial control (p < 0.05). CONCLUSIONS: The new antibacterial low-shrinkage-stress resin-based cement provides strong antibacterial action and maintains excellent mechanical properties with reduced polymerization shrinkage stress. CLINICAL SIGNIFICANCE: A low-shrinkage-stress resin-based cement containing DMAHDM was developed with potent antibacterial effects and promising mechanical properties. This cement may potentially enhance the longevity of fixed dental restoration such as a dental crown, inlay, onlay, and veneers through its excellent mechanical properties, low shrinkage stress, and strong antibacterial properties.


Assuntos
Metacrilatos , Cimentos de Resina , Antibacterianos/farmacologia , Biofilmes , Cimentos Dentários , Materiais Dentários , Éteres , Ácido Láctico/metabolismo , Metacrilatos/farmacologia , Metilaminas
6.
J Dent ; 122: 104140, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490839

RESUMO

OBJECTIVE: Resin cements with remineralizing and antibacterial properties are favorable for inhibition of caries. The objectives of this study were: (1) to investigate the capability of the novel dimethylaminohexadecyl-methacrylate (DMAHDM) and nano-sized amorphous calcium phosphate (NACP) containing cement to reduce saliva microcosm biofilm, and (2) to investigate the long-term ion release, recharge, and re-release of DMAHDM-NACP cement. METHODS: Pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol-A-dimethacrylate (EBPADMA) were used to make PEHB monomer. Five cements were fabricated: (1) PEHB+0%NACP+0%DMAHDM (experimental control); (2) PEHB+25%NACP+0%DMAHDM, (3) PEHB+25%NACP+0%DMAHDM; (4) PEHB+25%NACP+3%DMAHDM; (5) PEHB+25%NACP+5%DMAHDM. RelyX luting cement was used as commercial control. Colony-forming units (CFU), lactic acid production, metabolic activities, and minimum inhibitory concentration (MIC) were performed. Long-term Calcium (Ca) and phosphate (P) ion release, recharge, and re-release were assessed. RESULTS: Compared to experimental and commercial controls, the NACP-DMAHDM cement significantly reduced CFU biofilm by 2-3 orders of magnitude, metabolic activities from 0.24±0.06 A540/cm2 to 0.03±0.01 A540/cm2, and lactic acid production from 27.7 ± 2.5 mmol/L to 5.4 ± 2.1 mmol/L (n = 6) (p<0.05). The DMAHDM showed an MIC value of 0.03 mg/L. However, when the DMAHDM was combined with PMGDM monomer, the MIC was greater than DMAHDM alone. The ion concentrations for the experimental groups significantly increased over time (1-84 days), indicating continuous ion release (n = 3) (p<0.05). Increasing the DMAHDM mass fraction from 0% to 5% and 3% to 5% significantly enhanced ion recharge and re-release at the third cycle (p<0.05). CONCLUSIONS: Incorporating DMAHDM and NACP into resin-based crown cement provides strong antibacterial action against saliva microcosm biofilm and presents a high level of Ca and P ion recharge abilities, exhibiting long-term Ca and P ion release and remineralization potential. CLINICAL SIGNIFICANCE: Resin based cement containing NACP and DMAHDM were developed with remineralizing and potent antibacterial effects. This cement formulation showed ion release and remineralization potential and are promising formulations to inhibit the incidence of recurrent caries and could promote remineralization and be sustainable for the long term.


Assuntos
Cárie Dentária , Nanopartículas , Antibacterianos/farmacologia , Biofilmes , Fosfatos de Cálcio/farmacologia , Coroas , Cimentos Dentários/farmacologia , Materiais Dentários/farmacologia , Humanos , Ácido Láctico/metabolismo , Metacrilatos/farmacologia , Saliva/metabolismo
7.
Materials (Basel) ; 15(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454643

RESUMO

Dimethacrylate-based resin composites restorations have become widely-used intraoral materials in daily dental practice. The increasing use of composites has greatly enhanced modern preventive and conservative dentistry. They have many superior features, especially esthetic properties, bondability, and elimination of mercury and galvanic currents. However, polymeric materials are highly susceptible to polymerization shrinkage and stresses that lead to microleakage, biofilm formation, secondary caries, and restoration loss. Several techniques have been investigated to minimize the side effects of these shrinkage stresses. The primary approach is through fabrications and modification of the resin matrices. Therefore, this review article focuses on the methods for testing the shrinkage, as well as formulations of resinous matrices available to reduce polymerization shrinkage and its associated stress. Furthermore, this article reviews recent cutting-edge developments on bioactive low-shrinkage-stress nanocomposites to effectively inhibit the growth and activities of cariogenic pathogens and enhance the remineralization process.

8.
Dent Mater ; 38(2): 409-420, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973816

RESUMO

The objectives of this in vitro study were to develop a novel low-shrinkage-stress flowable nanocomposite with antibacterial properties through the incorporation of dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and investigate the mechanical and oral biofilm properties, to be used in minimally-invasive techniques. METHODS: The light-cured low-shrinkage-stress flowable resin was formulated by mixing urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) at a 1:1 mass ratio. Different mass fractions of glass, and either 5% DMAHDM or 20%NACP or both were incorporated. Paste flowability, ultimate micro tensile strength and surface roughness were evaluated. The antibacterial response of DMAHDM resin was assessed by using biofilms of human saliva-derived microcosm model. Virtuoso flowable composite was used as a control. RESULTS: (45% resin+5% DMAHDM+20% NACP+30% glass) formula yielded the needed outcomes. It had flow rate within the range of ISO requirement. The micro tensile strength was (39.1 ± 4.3) MPa, similar to (40.1 ± 4.0) MPa for commercial control (p > 0.05). The surface roughness values of the novel composite (0.079 ± 0.01) µm similar to commercial composite (0.09 ± 0.02) µm (p > 0.05). Salivary microcosm biofilm colony forming unit values were reduced by 5-6 logs (p < 0.05). Biofilm metabolic activity was also substantially reduced, compared to control composite (p < 0.05). SIGNIFICANCE: The novel bioactive flowable nanocomposite achieved strong antibacterial activities without compromising the mechanical properties. It is promising to be used as pit and fissure sealants, and as fillings in conservative cavities to inhibit recurrent caries and increase restoration longevity.


Assuntos
Metacrilatos , Nanocompostos , Antibacterianos/farmacologia , Biofilmes , Fosfatos de Cálcio/farmacologia , Odontologia , Humanos , Metacrilatos/farmacologia , Metilaminas
9.
Dent Mater ; 38(2): 397-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974900

RESUMO

OBJECTIVES: Composite restorations with calcium fluoride nanoparticles (nCaF2) can remineralize tooth structure through F and Ca ion release. However, the persistence of ion release is limited. The objectives for this study were to achieve long-term remineralization by developing a rechargeable nCaF2 nanocomposite and investigating the F and Ca recharge and re-release capabilities. METHODS: Three nCaF2 nanocomposites were formulated: (1) BT-nCaF2:Bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA); (2) PE-nCaF2:Pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA); (3) BTM-nCaF2:BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (Bis-MEP). All formulations contained 15% nCaF2 and 55% glass particles. Initial flexural strength and elastic modulus, F and Ca ion release, recharge and re-release were tested and compared to three commercial fluoride-containing materials. RESULTS: BT and BTM nCaF2 composites were 3-4 times stronger and had elastic modulus 2 times that of resin-modified glass ionomer controls. PE-nCaF2 had comparable strength to RMGIs. All nCaF2 composites had significant F and Ca ion release and ion rechargeability. In F and Ca recharging cycles, PE-nCaF2 had the highest ion recharging capability among nCaF2 groups, followed by BT-nCaF2 and BTM-nCaF2 (p < 0.05). For all recharge cycles, ion release maintained similar levels, demonstrating long-term ion release was possible. Furthermore, after the final recharge cycle, nCaF2 nanocomposites provided continuous ion release for 42 days without further recharge. SIGNIFICANCE: Novel nCaF2 rechargeable nanocomposites exhibited significant F and Ca ion release over multiple recharge cycles, demonstrating continuous long-term ion release. These nanocomposites are promising restorations with lasting remineralization potential.


Assuntos
Fluoreto de Cálcio , Nanocompostos , Fosfatos de Cálcio/química , Resinas Compostas/química , Resistência à Flexão , Fluoretos , Teste de Materiais , Nanocompostos/química
10.
J Dent ; 113: 103789, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455017

RESUMO

OBJECTIVE: Composites with remineralizing and antibacterial properties are favorable for caries inhibition. The objectives of this study were to develop a new bioactive nanocomposite with remineralizing and antibiofilm properties by incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and nano-calcium fluoride (nCaF2). METHODS: nCaF2 was produced via a spray-drying method and integrated at 15% mass fraction into composite. DMAHDM was added at 3% mass fraction. Mechanical properties and F and Ca ion releases were assessed. Colony-forming units (CFU), lactic acid and metabolic activity of biofilms on composites were performed. RESULTS: The new composites had flexural strengths of (95.28±6.32) MPa and (125.93±7.49) MPa, which were within the ISO recommendations. Biofilm CFU were reduced by 3-4 log (p<0.05). The composites achieved high F releases of (0.89±0.01) mmol/L and (0.44±0.01) mmol/L, and Ca releases of (1.46±0.05) mmol/L and (0.54±0.005) mmol/L. CONCLUSIONS: New nanocomposites were developed with good mechanical properties, potent antibacterial activity against salivary biofilms, and high F and Ca ion releases with potential for remineralization. CLINICAL SIGNIFICANCE: Novel nanocomposites using nCaF2 and DMAHDM were developed with potent antibacterial and remineralizing effects and high F and Ca ion releases. They are promising to inhibit recurrent caries, promote remineralization, and possess long-term sustainability.


Assuntos
Fluoretos , Nanocompostos , Antibacterianos/farmacologia , Biofilmes , Fluoreto de Cálcio , Fosfatos de Cálcio/farmacologia , Fluoretos/farmacologia , Metacrilatos
11.
Nanomaterials (Basel) ; 10(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050559

RESUMO

Oral biofilm accumulation at the tooth-restoration interface often leads to recurrent dental caries and restoration failure. The objectives of this study were to: (1) develop a novel bioactive crown cement containing dimethylaminohexadecyl methacrylate (DMAHDM) and nano-sized amorphous calcium phosphate (NACP), and (2) investigate the mechanical properties, anti-biofilm activity, and calcium (Ca2+) and phosphate (PO43-) ion release of the crown cement for the first time. The cement matrix consisted of pyromellitic glycerol dimethacrylate and ethoxylated bisphenol-A dimethacrylate monomers and was denoted PEHB resin matrix. The following cements were tested: (1) RelyX luting cement (commercial control); (2) 55% PEHB + 45% glass fillers (experimental control); (3) 55% PEHB + 20% glass + 25% NACP + 0% DMAHDM; (4) 52% PEHB + 20% glass + 25% NACP + 3% DMAHDM; (5) 51% PEHB + 20% glass + 25% NACP + 4% DMAHDM; (6) 50% PEHB + 20% glass + 25% NACP + 5% DMAHDM. Mechanical properties and ion release were measured. Streptococcusmutans (S. mutans) biofilms were grown on cements, and colony-forming units (CFUs) and other biofilm properties were measured. The novel bioactive cement demonstrated strong antibacterial properties and high levels of Ca2+ and PO43- ion release to remineralize tooth lesions. Adding NACP and DMAHDM into the cement did not adversely affect the mechanical properties and dentin bonding strength. In conclusion, the novel NACP + DMAHDM crown cement has excellent potential for restoration cementation to inhibit caries by suppressing oral biofilm growth and increasing remineralization via Ca2+ and PO43- ions. The NACP + DMAHDM composition may have wide applicability to other biomaterials to promote hard-tissue formation and combat bacterial infection.

12.
Bioengineering (Basel) ; 7(3)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751652

RESUMO

Polymeric materials are the first choice for restoring tooth cavities, bonding tooth-colored fillings, sealing root canal systems, and many other dental restorative applications. However, polymeric materials are highly susceptible to bacterial attachment and colonization, leading to dental diseases. Many approaches have been investigated to minimize the formation of biofilms over polymeric restorative materials and at the tooth/material interfaces. Among them, contact-killing compounds have shown promising results to inhibit dental biofilms. Contact-killing compounds can be immobilized within the polymer structure, delivering a long-lasting effect with no leaching or release, thus providing advantages compared to release-based materials. This review discusses cutting-edge research on the development of contact-killing compounds in dental restorative materials to target oral pathogens. Contact-killing compounds in resin composite restorations, dental adhesives, root canal sealers, denture-based materials, and crown cements have all demonstrated promising antibacterial properties. Contact-killing restorative materials have been found to effectively inhibit the growth and activities of several oral pathogens related to dental caries, periodontal diseases, endodontic, and fungal infections. Further laboratory optimization and clinical trials using translational models are needed to confirm the clinical applicability of this new generation of contact-killing dental restorative materials.

13.
J Funct Biomater ; 11(3)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752248

RESUMO

(1) Background: The objective of this study was to develop a novel dental nanocomposite containing dimethylaminohexadecyl methacrylate (DMAHDM), 2-methacryloyloxyethyl phosphorylcholine (MPC), and nanoparticles of calcium fluoride (nCaF2) for preventing recurrent caries via antibacterial, protein repellent and fluoride releasing capabilities. (2) Methods: Composites were made by adding 3% MPC, 3% DMAHDM and 15% nCaF2 into bisphenol A glycidyl dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) (denoted BT). Calcium and fluoride ion releases were evaluated. Biofilms of human saliva were assessed. (3) Results: nCaF2+DMAHDM+MPC composite had the lowest biofilm colony forming units (CFU) and the greatest ion release; however, its mechanical properties were lower than commercial control composite (p < 0.05). nCaF2+DMAHDM composite had similarly potent biofilm reduction, with mechanical properties matching commercial control composite (p > 0.05). Fluoride and calcium ion releases from nCaF2+DMAHDM were much more than commercial composite. Biofilm CFU on composite was reduced by 4 logs (n = 9, p < 0.05). Biofilm metabolic activity and lactic acid were also substantially reduced by nCaF2+DMAHDM, compared to commercial control composite (p < 0.05). (4) Conclusions: The novel nanocomposite nCaF2+DMAHDM achieved strong antibacterial and ion release capabilities, without compromising the mechanical properties. This bioactive nanocomposite is promising to reduce biofilm acid production, inhibit recurrent caries, and increase restoration longevity.

14.
Caries Res ; 53(5): 555-566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31137026

RESUMO

PURPOSE: To assess the effect of silver diamine fluoride (SDF) on microbial profiles present in plaque from root/cervical carious lesions, and its association with caries lesion arrest. MATERIALS AND METHODS: Twenty patients with at least one soft cavitated root/cervical carious lesion were included. One lesion/patient was randomly selected and treated with 38% SDF. Supragingival plaque samples were harvested at preintervention and 1 month postintervention. Using an MiSeq platform, 16S rDNA sequencing of the V3-V4 regions was used to determine bacterial profiles. Clinical evaluation of lesion hardness was used to evaluate arrest. t tests, principal component analysis (PCA), multidimensional scaling (MDS), and generalized linear models (GLMs) tests were used for statistical comparisons. RESULTS: From a total of 40 plaque samples, 468 probe targets were observed. Although 60% of lesions became hard postintervention, PCA and MDS tests showed no distinct pre- and postintervention groups. In addition, pre- and postintervention differences in diversity (Shannon index) of microbial profiles between patients with and without lesion arrest were not statistically different. A likelihood ratio test for pre- versus postintervention differences within patients, i.e., adjusting for differences between patients using negative binomial GLMs, showed 17 bacterial taxa with significant differences (FDR <0.05). CONCLUSION: Although 60% of lesions hardened after SDF treatment, this was not directly due to either overall statistically significant differences in microbial profiles or differences in microbial diversity. Nevertheless, there was a trend with some acid-producing species in that their relative abundance was reduced postintervention. The negative binomial GLMs showed 17 bacterial taxa that were significantly different after SDF treatment.


Assuntos
Biofilmes/efeitos dos fármacos , Cariostáticos/farmacologia , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Compostos de Amônio Quaternário/farmacologia , Cárie Radicular/microbiologia , Compostos de Prata/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Feminino , Fluoretos Tópicos/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade
15.
Am J Dent ; 32(1): 47-52, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30834732

RESUMO

PURPOSE: To compare the effect of polishing systems on surface roughness of nanohybrid and microhybrid resin composites. METHODS: Two types of restorative resin composites and two one-step polishing systems were used in this study (IPS Empress Direct as the nanohybrid resin composite and Filtek P90 as the microhybrid). A total of 120 discs were fabricated (n=120). The specimens were divided into six groups of n=20 each. For polishing systems, PoGo One-Step Diamond Micro-Polisher and OptraPol Next Generation were selected. The before and after mean Ra values were recorded using a surface profilometer. Results were statistically analyzed with the Kruskal-Wallis H and the Mann-Whitney U tests. A P-value of ≤0.05 was considered statistically significant. RESULTS: PoGo polishing system recorded the lowest surface roughness, in case of both nano and microhybrid composites, with mean Ra values of 0.060 µm and 0.108 µm, respectively. PoGo also produced maximum reduction in the surface roughness in the nanohybrid group with 56.83%. OptraPol recorded a comparatively similar mean Ra value of 0.067 µm for the nanohybrid composites but recorded the least reduction in surface roughness with 48.41% for the microhybrid group. CLINICAL SIGNIFICANCE: One-step diamond polishing systems combined with nanohybrid resin composites exhibit increased surface smoothness compared to microhybrids.


Assuntos
Resinas Compostas , Polimento Dentário , Diamante , Teste de Materiais , Estatísticas não Paramétricas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...