Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170572, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309337

RESUMO

Efficient treatment of sewage sludge may transform waste into stable materials with minimised hazardous properties ready for secondary use. Pyrolysed sewage sludge, sludgechar, has multiple environmental benefits including contaminant sorption capacity and nutrient recycling. The properties of five sludgechars were tested firstly for adsorption efficiency in laboratory solutions before prospective application to soils. A wide variety of metal(loid)s (As, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn) was involved. Secondly, the sludgechars (3 % v/v) were incubated in five soils differing in (multi)-metal(loid) presence and the level of contamination. The main aim was to evaluate the metal(loid) immobilisation potential of the sludgechars for soil remediation. Moreover, nutrient supply was investigated to comprehensively assess the material's benefits for soils. All sludgechars were efficient (up to 100 %) for the removal of metal cations while their efficiency for metal(loid) anions was limited in aqueous solutions. Phosphates and sulphates were identified crucial for metal(loid) capture, based on SEM/EDS, XRD and MINTEQ findings. In soils, important fluctuations were observed for Zn, being partially immobilised by the sludgechars in high-Zntot soils, while partially solubilised in moderate to low-Zntot soils. Moreover, pH showed to be crucial for material stability, metal(loid) adsorption ability and their immobilisation in soils. Although metal(loid) retention was generally low in soils, nutrient enrichment was significant after sludgechar application. Long-term evaluation of the material sorption efficiency, nutrient supply, and ageing in soil environments will be necessary in future studies.

2.
Chemosphere ; 242: 125248, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896196

RESUMO

The remediation of a soil contaminated with Zn, Pb and Cd was tested by using biochar (BC), nano zero-valent iron (nZVI) and a combination of these two (BC + nZVI). Each amendment was individually applied to the soil at 2 wt%. We tested the influence of (i) the used amendments, (ii) time, and (iii) soil moisture conditions on the metal availability and soil physico-chemical parameters using various extraction methods, as well as soil pore water samplings. We found that metal availability was mainly affected by pH under the influence of time and water content. Among the tested treatments, BC was the most successful, resulting in the lowest amounts of the target metals in the pore water and the smallest temporal changes in metal concentrations and pH in the soil. The use of nZVI efficiently decreased water-extractable Pb in the short- and long-term. The BC + nZVI treatment also yielded promising results regarding the immobilisation of the studied metals. Time provoked a general decrease in pH, which occasionally increased the available metal concentrations. Raising the soil water content increased the pH and subsequently lowered the available metal concentrations in the pore water. The mechanisms of metal stabilisation were further investigated by SEM/EDS. The results indicated that the used soil amendments enhanced the binding of Zn, Pb, and Cd on Fe/Mn/Al oxides/hydroxides, which in turn resulted in the stabilisation of the target metals.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Poluentes do Solo/química , Cádmio/análise , Ferro/química , Chumbo , Metais Pesados/análise , Óxidos/química , Solo/química , Poluentes do Solo/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...