Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 464, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741085

RESUMO

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Assuntos
Linhagem da Célula , Cromatina , Gônadas , Fatores de Transcrição SOX9 , Análise de Célula Única , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Linhagem da Célula/genética , Feminino , Masculino , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Gônadas/metabolismo , Gônadas/citologia , Gônadas/embriologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Testículo/metabolismo , Testículo/citologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/metabolismo , Ovário/citologia
2.
Zool Res ; 44(3): 559-576, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37161651

RESUMO

Parkinson's disease (PD) relates to defective mitochondrial quality control in the dopaminergic motor network. Genetic studies have revealed that PINK1 and Parkin mutations are indicative of a heightened propensity to PD onset, pinpointing mitophagy and inflammation as the culprit pathways involved in neuronal loss in the substantia nigra (SNpc). In a reciprocal manner, LRRK2 functions in the regulation of basal flux and inflammatory responses responsible for PINK1/Parkin-dependent mitophagy activation. Pharmacological intervention in these disease-modifying pathways may facilitate the development of novel PD therapeutics, despite the current lack of an established drug evaluation model. As such, we reviewed the feasibility of employing the versatile global Pink1 knockout (KO) rat model as a self-sufficient, spontaneous PD model for investigating both disease etiology and drug pharmacology. These rats retain clinical features encompassing basal mitophagic flux changes with PD progression. We demonstrate the versatility of this PD rat model based on the incorporation of additional experimental insults to recapitulate the proinflammatory responses observed in PD patients.


Assuntos
Doença de Parkinson , Animais , Ratos , Dopamina , Inflamação , Doença de Parkinson/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
3.
J Immunol Res ; 2022: 3704798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033386

RESUMO

Long noncoding RNAs (lncRNAs) actively participate in breast cancer (BRCA) tumorigenesis via epigenetic mechanisms. Our study identified immune-related lncRNA (irlncRNA) pairs and compiled them into a set of noncoding gene signatures able to stratify subtypes of BRCA associated with variable degrees of survival and immune cell infiltration. A 40 immune-related lncRNA pair (IRLP) signature including 43 irlncRNAs was built, with high sensitivity and specificity for the prediction of survival in different molecular subtypes of BRCA. Results demonstrated that the low-risk group showed a significantly longer survival rate, and this novel IRLP signature was highly associated with survival status, T stage, metastatic disease, and overall stage in BRCA. Immune infiltrating analyses found that the low-risk group has a lower expression level of macrophage M2 and a higher expression level of immunosuppressed biomarkers than the high-risk group. DEirlncRNAs were further proven to be significantly related to the MAPK signaling, Jak-STAT signaling, and ErbB signaling pathways in BRCA. In conclusion, the 40 IRLP signature showed a promising clinical prediction value in the prognosis of different molecular subtypes and immunotherapy response in BRCA, and the underlying mechanism for these IRLPs warrants further investigations.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Biomarcadores Tumorais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Aprendizado de Máquina , Prognóstico
4.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628480

RESUMO

In myelodysplastic syndrome (MDS), resistance to hypomethylating agents (HMA) portends a poor prognosis, underscoring the importance of understanding the molecular mechanisms leading to HMA-resistance. In this study, P39 and Kasumi-1 cells and their azacitidine-resistant and decitabine-resistant sublines were evaluated comparatively with transcriptomic and methylomic analyses. Expression profiling and genome-wide methylation microarray showed downregulation of PTEN associated with DNA hypermethylation in P39 cell lines resistant to azacitidine and decitabine. This pattern of PTEN dysregulation was also confirmed in a cohort of patients failing treatment with HMA. DNA hypomethylation of MDM2 was detected with downregulation of MDM2 in HMA resistant cell lines. Long-read sequencing revealed significant RNA hypomethylation of MDM2 resulting in alternative splicing and production of a truncated MDM2 transcript in azacitidine-resistant P39 cells. The expression of this MDM2 truncated transcript was also significantly increased in HMA-resistant patients compared with HMA-responsive patients. In conclusion, epigenetic and epi-transcriptomic dysregulation of PTEN and MDM2 were associated with resistance to hypomethylating agents.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Segunda Neoplasia Primária , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-mdm2 , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , Metilação de DNA , Decitabina/farmacologia , Epigênese Genética , Inativação Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Segunda Neoplasia Primária/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-mdm2/genética
5.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563039

RESUMO

Myelodysplastic syndrome (MDS) is a clonal myeloid neoplasm characterized by ineffective hematopoiesis, cytopenia, dysplasia, and clonal instability, leading to leukemic transformation. Hypomethylating agents are the mainstay of treatment in higher-risk MDS. However, treatment resistance and disease transformation into acute myeloid leukemia (AML) is observed in the majority of patients and is indicative of a dismal outcome. The residual cell clones resistant to therapy or cell clones acquiring new genetic aberrations are two of the key events responsible for drug resistance. Bulk tumor sequencing often fails to detect these rare subclones that confer resistance to therapy. In this study, we employed a single-cell DNA (sc-DNA) sequencing approach to study the clonal heterogeneity and clonal evolution in two MDS patients refractory to HMA. In both patients, different single nucleotide variations (SNVs) or insertions and deletions (INDELs) were detected with bulk tumor sequencing. Rare cell clones with mutations that are undetectable by bulk tumor sequencing were detected by sc-DNA sequencing. In addition to SNVs and short INDELs, this study also revealed the presence of a clonal copy number loss of DNMT3A, TET2, and GATA2 as standalone events or in association with the small SNVs or INDELs detected during HMA resistance and disease progression.


Assuntos
Variação Genética , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Variações do Número de Cópias de DNA , Progressão da Doença , Variação Genética/genética , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Nucleotídeos , Análise de Sequência de DNA , Análise de Célula Única/métodos
6.
Phytomedicine ; 102: 154162, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35598524

RESUMO

BACKGROUND: Misusage of pyrrolizidine alkaloid (PA)-containing plants or unaware intake of PA-contaminated foodstuffs causes thousands of PA poisoning cases in humans. PA intoxication is accompanied by oxidative stress and subsequent extensive hepatocellular damage. Our previous study has demonstrated that 18ß-glycyrrhetinic acid (GA), a bioactive constituent of liquorice, prevented PA-induced hepatotoxicity in rats, however the underlying mechanisms remain unclear. OBJECTIVE: This study aims to explore the mechanisms underlying the hepato-protective effect of GA in combating retrorsine (RTS, a representative toxic PA)-induced liver injury. METHODS: Histological and biochemical assessments were employed to evaluate the protective effect of GA on RTS-induced hepatotoxicity in rats. Sulforhodamine B assay, real-time PCR, western blotting, and immunostaining were used to explore the underlying mechanisms in human hepatocytes and rats. RESULTS: Our findings demonstrated that GA alleviated RTS-induced elevation of serum ALT and bilirubin levels, as well as hepatocytes necrosis and sinusoidal endothelial cells (SECs) damage in rats. GA also enhanced the activities and expressions of several antioxidant enzymes through upregulating nuclear factor-erythroid 2-related factor2 (Nrf2). Moreover, inhibition of Nrf2 blocked the hepatoprotective effect of GA against RTS intoxication. Mechanistically, GA increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and enhanced glycogen synthase kinase 3 beta (GSK3ß) inhibitory phosphorylation at serine 9, thus promoting the nuclear accumulation of Nrf2 and activating its downstream targets. CONCLUSION: This study for the first time demonstrated that GA exerted protective effects against RTS-induced liver injury by potentiating the Nrf2-mediated antioxidant system through PI3K/Akt/GSK3ß pathway. The findings indicated that GA may serve as a potential candidate drug for the treatment of PA intoxication.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias , Alcaloides de Pirrolizidina , Animais , Ratos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Células Endoteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Ácido Glicirretínico/análogos & derivados , Fígado , Hepatopatias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alcaloides de Pirrolizidina/farmacologia
7.
Front Pharmacol ; 13: 850859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370657

RESUMO

Misuse of pyrrolizidine alkaloid (PA)-containing plants or consumption of PA-contaminated foodstuffs causes numerous poisoning cases in humans yearly, while effective therapeutic strategies are still limited. PA-induced liver injury was initiated by cytochrome P450 (CYP)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Liquorice, a hepato-protective herbal medicine, is commonly used concurrently with PA-containing herbs in many compound traditional Chinese medicine formulas, and no PA-poisoning cases have been reported with this combination. The present study aimed to investigate hepato-protective effects of liquorice aqueous extract (EX) and 18ß-glycyrrhetinic acid (GA, the primary bioactive constituent of liquorice) against PA-induced hepatotoxicity and the underlying mechanism. Histopathological and biochemical analysis demonstrated that both single- and multiple-treatment of EX (500 mg/kg) or GA (50 mg/kg) significantly attenuated liver damage caused by retrorsine (RTS, a representative hepatotoxic PA). The formation of pyrrole-protein adducts was significantly reduced by single- (30.3% reduction in liver; 50.8% reduction in plasma) and multiple- (32.5% reduction in liver; 56.5% reduction in plasma) treatment of GA in rats. Single- and multiple-treatment of EX also decreased the formation of pyrrole-protein adducts, with 30.2 and 31.1% reduction in rat liver and 51.8 and 53.1% reduction in rat plasma, respectively. In addition, in vitro metabolism assay with rat liver microsomes demonstrated that GA reduced the formation of metabolic activation-derived pyrrole-glutathione conjugate in a dose-dependent manner with the estimated IC50 value of 5.07 µM. Further mechanism study showed that GA inhibited activities of CYPs, especially CYP3A1, the major CYP isoform responsible for the metabolic activation of RTS in rats. Enzymatic kinetic study revealed a competitive inhibition of rat CYP3A1 by GA. In conclusion, our findings demonstrated that both EX and GA exhibited significant hepato-protective effects against RTS-induced hepatotoxicity, mainly through the competitive inhibition of CYP-mediated metabolic activation of RTS.

8.
Arthritis Res Ther ; 24(1): 1, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980262

RESUMO

BACKGROUND: Ankylosing spondylitis is a progressive, disabling joint disease that affects millions worldwide. Given its unclear etiology, studies of ankylosing spondylitis relied heavily on drug-induced or transgenic rodent models which retain only partial clinical features. There is obviously a lack of a useful disease model to conduct comprehensive mechanistic studies. METHODS: We followed a group of cynomolgus monkeys having joint lesions reported of spinal stiffness for 2 years by conducting hematological testing, radiographic examination, family aggregation analysis, pathological analysis, and genetic testing. RESULTS: The results confirmed that these diseased animals suffered from spontaneous ankylosing spondylitis with clinical features recapitulating human ankylosing spondylitis disease progression, manifested by pathological changes and biochemical indicators similar to that of ankylosing spondylitis patients. CONCLUSION: The study offers a promising non-human primate model for spontaneous ankylosing spondylitis which may serve as an excellent substitute for its pre-clinical research.


Assuntos
Espondilite Anquilosante , Animais , Progressão da Doença , Humanos , Macaca fascicularis , Modelos Animais , Coluna Vertebral/patologia , Espondilite Anquilosante/diagnóstico por imagem , Espondilite Anquilosante/genética
9.
Front Cell Dev Biol ; 10: 956604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619862

RESUMO

DNA methylation and hydroxymethylation have been implicated in the regulatory dynamics of gene expression in normal development and differentiation. 5-Hydroxymethylcytosine (5hmC), created by the ten-eleven translocation (TET) protein-catalyzed oxidation of 5-methylcytosine (5mC), is abundant in the brain, but the genome-wide distribution and impact of 5hmC during diverse neuronal differentiation remain unknown. Here, we used an in vitro model to differentiate mouse embryonic stem cells (mESCs) into ventral midbrain and hindbrain neural progenitors, followed by characterizing global 5hmC distribution using a nano-5hmC-seal approach. The 5hmC pattern was dynamic in promoter, exon, and enhancer regions, associated with gene activation and repression. For example, ventral midbrain markers (Lmx1a, Otx2, and Th) and hindbrain markers (Hoxa1, Zic1, and Tph1) acquire 5hmC and are upregulated during differentiation. Among the differentially expressed genes involved in both midbrain and hindbrain lineage commitment, phosphatase and tensin homolog (Pten) was identified as a key regulator for neuronal development. We confirmed that Pten knockout disrupted the normal differentiation of midbrain/hindbrain neural progenitors, resulting in immature neurons. In addition, 5421 and 4624 differentially hydroxymethylated regions (DhMRs) were identified in the differentiation of Pten-/- mESC into ventral midbrain and hindbrain progenitors, respectively. Gene ontology analysis showed that the majority of these DhMRs were associated with neurogenesis, ectoderm development, and signal transduction. Moreover, further combinational analysis of the 5hmC pattern and transcriptomic profile in the midbrain progenitor cells demonstrated Pten as a toggle to modulate mitochondrial associated pathways. Therefore, our findings elucidated the molecular mechanisms underlying lineage-specific differentiation of pluripotent stem cells to the midbrain/hindbrain progenitors, where Pten participates as one key regulator.

10.
JHEP Rep ; 2(6): 100179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33134908

RESUMO

BACKGROUND & AIMS: The paradox of hepatic insulin resistance describes the inability for liver to respond to bioenergetics hormones in suppressing gluconeogenesis whilst maintaining lipid synthesis. Here, we report the deficiency of miR-192-3p in the livers of mice with diabetes and its role in alleviating hepatic steatosis. METHODS: As conventional pre-microRNA (miRNA) stem-loop overexpression only boosts guiding strand (i.e. miR-192-5p) expression, we adopted an artificial AAV(DJ)-directed, RNA Pol III promoter-driven miRNA hairpin construct for star-strand-specific overexpression in the liver. Liver steatosis and insulin resistance markers were evaluated in primary hepatocytes, mice with diabetes, and mice with excessive carbohydrate consumption. RESULTS: Functional loss of miR-192-3p in liver exacerbated hepatic micro-vesicular steatosis and insulin resistance in either mice with diabetes or wild-type mice with excessive fructose consumption. Liver-specific overexpression of miR-192-3p effectively halted hepatic steatosis and ameliorated insulin resistance in these mice models. Likewise, hepatocytes overexpressing miR-192-3p exhibited improved lipid accumulation, accompanied with decreases in lipogenesis and lipid-accumulation-related transcripts. Mechanistically, glucocorticoid receptor (GCR, also known as nuclear receptor subfamily 3, group C, member 1 [NR3C1]) was demonstrated to be negatively regulated by miR-192-3p. The effect of miR-192-3p on mitigating micro-vesicular steatosis was ablated by the reactivation of NR3C1. CONCLUSIONS: The star strand miR-192-3p was an undermined glycerolipid regulator involved in controlling fat accumulation and insulin sensitivity in liver through blockade of hepatic GCR signalling; this miRNA may serve as a potential therapeutic option for the common co-mobility of diabetic mellitus and fatty liver disease. LAY SUMMARY: The potential regulatory activity of star strand microRNA (miRNA) species has been substantially underestimated. In this study, we investigate the role and mechanism of an overlooked star strand miRNA (miR-192-3p) in regulating hepatic steatosis and insulin signalling in the livers of mice with diabetes and mice under excessive carbohydrate consumption.

11.
Sci Rep ; 8(1): 9630, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941943

RESUMO

MicroRNAs (miRNAs) are known to be crucial players in governing the differentiation of human induced pluripotent stem cells (hiPSCs). Despite their utter importance, identifying key lineage specifiers among the myriads of expressed miRNAs remains challenging. We believe that the current practice in mining miRNA specifiers via delineating dynamic fold-changes only is inadequate. Our study, therefore, provides evidence to pronounce "lineage specificity" as another important attribute to qualify for these lineage specifiers. Adopted hiPSCs were differentiated into representative lineages (hepatic, nephric and neuronal) over all three germ layers whilst the depicted miRNA expression changes compiled into an integrated atlas. We demonstrated inter-lineage analysis shall aid in the identification of key miRNAs with lineage-specificity, while these shortlisted candidates were collectively known as "lineage-specific miRNAs". Subsequently, we followed through the fold-changes along differentiation via computational analysis to identify miR-192 and miR-372-3p, respectively, as representative candidate key miRNAs for the hepatic and nephric lineages. Indeed, functional characterization validated that miR-192 and miR-372-3p regulate lineage differentiation via modulation of the expressions of lineage-specific genes. In summary, our presented miRNA atlas is a resourceful ore for the mining of key miRNAs responsible for lineage specification.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética , Mineração de Dados , Regulação da Expressão Gênica , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Células-Tronco Neurais/citologia
12.
Sci Rep ; 5: 11661, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123532

RESUMO

The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics­quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds' escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds' cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.


Assuntos
Endossomos/metabolismo , Técnicas de Transferência de Genes , Nanodiamantes/química , Endocitose , Células Hep G2 , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Plasmídeos/genética , Plasmídeos/metabolismo , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...