Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(1): 546-563, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776523

RESUMO

Orchids parasitically depend on external nutrients from mycorrhizal fungi for seed germination. Previous findings suggest that orchids utilize a genetic system of mutualistic arbuscular mycorrhizal (AM) symbiosis, in which the plant hormone gibberellin (GA) negatively affects fungal colonization and development, to establish parasitic symbiosis. Although GA generally promotes seed germination in photosynthetic plants, previous studies have reported low sensitivity of GA in seed germination of mycoheterotrophic orchids where mycorrhizal symbiosis occurs concurrently. To elucidate the connecting mechanisms of orchid seed germination and mycorrhizal symbiosis at the molecular level, we investigated the effect of GA on a hyacinth orchid (Bletilla striata) seed germination and mycorrhizal symbiosis using asymbiotic and symbiotic germination methods. Additionally, we compared the transcriptome profiles between asymbiotically and symbiotically germinated seeds. Exogenous GA negatively affected seed germination and fungal colonization, and endogenous bioactive GA was actively converted to the inactive form during seed germination. Transcriptome analysis showed that B. striata shared many of the induced genes between asymbiotically and symbiotically germinated seeds, including GA metabolism- and signaling-related genes and AM-specific marker homologs. Our study suggests that orchids have evolved in a manner that they do not use bioactive GA as a positive regulator of seed germination and instead autoactivate the mycorrhizal symbiosis pathway through GA inactivation to accept the fungal partner immediately during seed germination.


Assuntos
Micorrizas , Orchidaceae , Simbiose/genética , Micorrizas/fisiologia , Germinação/genética , Giberelinas , Sementes/genética , Orchidaceae/genética
2.
Mycorrhiza ; 32(5-6): 481-495, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35844010

RESUMO

Epiphytic orchids are commonly found in exposed environments, which plausibly lead to different root fungal community structures from terrestrial orchids. Until recently, few studies have been conducted to show the fungal community structure during the growth of a photosynthetic and epiphytic orchid in its natural growing site. In this study, the Vanda falcata (commonly known as Neofinetia falcata), one of Japan's ornamental orchids, was used to characterize the fungal community structure at different developmental stages. Amplicon sequencing analysis showed that all development stages contain a similar fungal community: Ascomycota dominate half of the community while one-third of the community belongs to Basidiomycota. Rhizoctonia-like fungi, a polyphyletic basidiomycetous fungal group forming mycorrhizas in many orchids, exist even in a smaller portion (around one-quarter) compared to other Basidiomycota members. While ascomycetous fungi exhibit pathogenicity, two Ceratobasidium strains isolated from young and adult plants could initiate seed germination in vitro. It was also found that the colonization of mycorrhizal fungi was concentrated in a part of the root where it directly attaches to the phorophyte bark, while ascomycetous fungi were distributed in the velamen but never colonized cortical cells. Additionally, the root parts attached to the bark have denser exodermal passage cells, and these cells were only colonized by mycorrhizal fungi that further penetrated into the cortical area. Therefore, we confirmed a process that physical regulation of fungal entry to partition the ascomycetes and mycorrhizal fungi results in the balanced mycorrhizal symbiosis in this orchid.


Assuntos
Ascomicetos , Basidiomycota , Micorrizas , Orchidaceae , Ascomicetos/genética , Crescimento e Desenvolvimento , Orchidaceae/microbiologia , Filogenia , Simbiose
3.
Front Plant Sci ; 12: 795695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975984

RESUMO

Morphotypes of arbuscular mycorrhizal (AM) symbiosis, Arum, Paris, and Intermediate types, are mainly determined by host plant lineages. It was reported that the phytohormone gibberellin (GA) inhibits the establishment of Arum-type AM symbiosis in legume plants. In contrast, we previously reported that GA promotes the establishment of Paris-type AM symbiosis in Eustoma grandiflorum, while suppressing Arum-type AM symbiosis in a legume model plant, Lotus japonicus. This raises a hitherto unexplored possibility that GA-mediated transcriptional reprogramming during AM symbiosis is different among plant lineages as the AM morphotypes are distinct. Here, our comparative transcriptomics revealed that several symbiosis-related genes were commonly upregulated upon AM fungal colonization in L. japonicus (Arum-type), Daucus carota (Intermediate-type), and E. grandiflorum (Paris-type). Despite of the similarities, the fungal colonization levels and the expression of symbiosis-related genes were suppressed in L. japonicus and D. carota but were promoted in E. grandiflorum in the presence of GA. Moreover, exogenous GA inhibited the expression of genes involved in biosynthetic process of the pre-symbiotic signal component, strigolactone, which resulted in the reduction of its endogenous accumulation in L. japonicus and E. grandiflorum. Additionally, differential regulation of genes involved in sugar metabolism suggested that disaccharides metabolized in AM roots would be different between L. japonicus and D. carota/E. grandiflorum. Therefore, this study uncovered the conserved transcriptional responses during mycorrhization regardless of the distinct AM morphotype. Meanwhile, we also found diverse responses to GA among phylogenetically distant AM host plants.

4.
Plants (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317200

RESUMO

As one of the largest families of flowering plants, Orchidaceae is well-known for its high diversity and complex life cycles. Interestingly, such exquisite plants originate from minute seeds, going through challenges to germinate and establish in nature. Alternatively, orchid utilization as an economically important plant gradually decreases its natural population, therefore, driving the need for conservation. As with any conservation attempts, broad knowledge is required, including the species' interaction with other organisms. All orchids establish mycorrhizal symbiosis with certain lineages of fungi to germinate naturally. Since the whole in situ study is considerably complex, in vitro symbiotic germination study is a promising alternative. It serves as a tool for extensive studies at morphophysiological and molecular levels. In addition, it provides insights before reintroduction into its natural habitat. Here we reviewed how mycorrhiza contributes to orchid lifecycles, methods to conduct in vitro study, and how it can be utilized for conservation needs.

5.
Plants (Basel) ; 9(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605205

RESUMO

Chitin, an N-acetylglucosamine polymer, is well-known to have unique biological functions, such as growth promotion and disease resistance induction in plants. Chitin has been expectedly used for improving crop yield using its functions; however, chitin derivatives, such as chitin oligosaccharide (CO) and chitosan, are widely used instead since chitin is difficult to handle because of its insolubility. Chitin nanofiber (CNF), produced from chitin through nanofibrillation, retains its polymeric structure and can be dispersed uniformly even in water. Here, the effects of CO and CNF on plant responses were directly compared in soybeans (Glycine max) to define the most effective method to produce chitin derivatives for plant response induction. The growth promotion of aerial parts was observed only in CNF-treated plants. The transcriptome analysis showed that the number of differentially expressed genes (DEGs) in CNF-treated soybeans was higher than in CO-treated soybeans. Notably, the expression patterns of DEGs were mostly similar but were strongly induced by CNF treatment as compared with the CO group. These results reveal that CNF can induce stronger plant response to chitin than CO in soybeans, suggesting nanofibrillation, rather than oligomerization, as a more effective method to produce chitin derivatives for plant response induction.

6.
Plant Cell Physiol ; 61(3): 565-575, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790118

RESUMO

Arbuscular mycorrhizas (AMs) are divided into two types according to morphology: Arum- and Paris-type AMs. Gibberellins (GAs) mainly inhibit the establishment of Arum-type AM symbiosis in most model plants, whereas the effects of GAs on Paris-type AM symbiosis are unclear. To provide insight into the mechanism underlying this type of symbiosis, the roles of GAs were investigated in Eustoma grandiflorum when used as the host plant for Paris-type AM establishment. Eustoma grandiflorum seedlings were inoculated with the model AM fungus, Rhizophagus irregularis, and the effects of GA and the GA biosynthesis inhibitor uniconazole-P on the symbiosis were quantitatively evaluated. Exogenous GA significantly increased hyphopodium formation at the epidermis, thus leading to the promotion of fungal colonization and arbuscule formation in the root cortex. By contrast, the suppression of GA biosynthesis and signaling attenuated fungal entry to E. grandiflorum roots. Moreover, the exudates from GA-treated roots strongly induced the hyphal branching of R. irregularis. Our results show that GA has an contrasting effect on Paris-type AM symbiosis in E. grandiflorum compared with Arum-type AM symbiosis. This finding could be explained by the differential regulation of the early colonization stage, where fungal hyphae make contact with and penetrate the epidermis.


Assuntos
Giberelinas/farmacologia , Glomeromycota/efeitos dos fármacos , Glomeromycota/fisiologia , Liliaceae/fisiologia , Micorrizas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Simbiose/efeitos dos fármacos , Simbiose/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/microbiologia , Glomeromycota/crescimento & desenvolvimento , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/fisiologia , Hifas , Liliaceae/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Plântula , Transdução de Sinais , Triazóis/metabolismo
7.
Int J Biol Macromol ; 151: 1322-1331, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751746

RESUMO

Chitin, an N-acetyl-D-glucosamine polymer, has been known to enhance plant growth. However, this polysaccharide has not been used extensively in experimental work or agriculture practices because its hydrophobic nature makes it difficult to handle. Chitin nanofiber (CNF), which disperses well in water, can feasibly be used to evaluate the effect of chitin on the promotion of plant growth. In this study, we analysed the contents of inorganic elements and global gene expression to obtain an overview of the growth-promoting action of chitins in plants. Significant increases in the biomass of aerial parts and concentration of chlorophyll following treatment with CNF or short-chain chitin oligomers were observed in tomatoes that were hydroponically cultivated under ultralow nutrient concentrations. The results of the quantification of inorganic elements demonstrated that concentrations of nitrogen and carbon significantly increased in whole tomato plant under chitin treatment. Transcriptome analysis of CNF-treated tomatoes by RNA sequencing showed that the expression levels of genes related to nitrogen acquisition and assimilation, nutrient allocation and photosynthesis were altered. These results indicate that the growth-promoting action of chitin treatment is caused by an improvement in nitrogen uptake efficiency and that CNF could be a useful material for nutrient management in tomato production.


Assuntos
Quitina/metabolismo , Nanofibras , Nitrogênio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Biomassa , Carbono/metabolismo , Quitina/química , Quitina/farmacologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/efeitos dos fármacos , Nanofibras/química , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia
8.
Plants (Basel) ; 8(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405202

RESUMO

Orchids produce minute seeds that contain limited or no endosperm, and they must form an association with symbiotic fungi to obtain nutrients during germination and subsequent seedling growth under natural conditions. Orchids need to select an appropriate fungus among diverse soil fungi at the germination stage. However, there is limited understanding of the process by which orchids recruit fungal associates and initiate the symbiotic interaction. This study aimed to better understand this process by focusing on the seed coat, the first point of fungal attachment. Bletilla striata seeds, some with the seed coat removed, were prepared and sown with symbiotic fungi or with pathogenic fungi. The seed coat-stripped seeds inoculated with the symbiotic fungi showed a lower germination rate than the intact seeds, and proliferated fungal hyphae were observed inside and around the stripped seeds. Inoculation with the pathogenic fungi increased the infection rate in the seed coat-stripped seeds. The pathogenic fungal hyphae were arrested at the suspensor side of the intact seeds, whereas the seed coat-stripped seeds were subjected to severe infestation. These results suggest that the seed coat restricts the invasion of fungal hyphae and protects the embryo against the attack of non-symbiotic fungi.

9.
Int J Biol Macromol ; 118(Pt B): 2185-2192, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30021137

RESUMO

Chitin has not been extensively used in agriculture owing to its handling difficulties despite its utilizable functions such as induction of disease resistance and growth promotion in plants. Chitin nanofiber (CNF), which has an elicitor activity to induce plant disease resistance, can be handled like a water-soluble material, because of its high dispersibility. To determine the potential use of CNF in agriculture, the nanofibrillation degree of chitin for elicitor activity and its effect on the disease resistance against pathogens were examined in cabbage and strawberry plants. The similarity in thickness and length of CNF to that of polymeric chitin was sufficient to induce elicitor activity in both plants. Cabbage and strawberry plants, which were grown in a mixture of soil and CNF with optimized specification, challenged with fungal pathogens showed a reduction in the number of spots caused by Alternaria brassicicola and lesion size by Colletotrichum fructicola, respectively. Gene expression analysis revealed that the defense-related genes in cabbage plant grown in CNF-containing soil were significantly upregulated before and after pathogen infection. These results indicate that CNF can systemically induce disease resistance in cabbage and strawberry plants and is a promising natural-based material to control diseases in cultivated plants.


Assuntos
Brassica/imunologia , Quitina/química , Resistência à Doença , Fragaria/imunologia , Nanofibras/química , Doenças das Plantas/imunologia , Animais , Brassica/genética , Brassica/microbiologia , Fragaria/crescimento & desenvolvimento , Fragaria/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo
10.
Mol Plant Microbe Interact ; 31(10): 1032-1047, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29649962

RESUMO

Achlorophylous and early developmental stages of chorolophylous orchids are highly dependent on carbon and other nutrients provided by mycorrhizal fungi, in a nutritional mode termed mycoheterotrophy. Previous findings have implied that some common properties at least partially underlie the mycorrhizal symbioses of mycoheterotrophic orchids and that of autotrophic arbuscular mycorrhizal (AM) plants; however, information about the molecular mechanisms of the relationship between orchids and their mycorrhizal fungi is limited. In this study, we characterized the molecular basis of an orchid-mycorrhizal (OM) symbiosis by analyzing the transcriptome of Bletilla striata at an early developmental stage associated with the mycorrhizal fungus Tulasnella sp. The essential components required for the establishment of mutual symbioses with AM fungi or rhizobia in most terrestrial plants were identified from the B. striata gene set. A cross-species gene complementation analysis showed one of the component genes, calcium and calmodulin-dependent protein kinase gene CCaMK in B. striata, retains functional characteristics of that in AM plants. The expression analysis revealed the activation of homologs of AM-related genes during the OM symbiosis. Our results suggest that orchids possess, at least partly, the molecular mechanisms common to AM plants.


Assuntos
Basidiomycota/fisiologia , Micorrizas/fisiologia , Orchidaceae/fisiologia , Simbiose/fisiologia , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma Fúngico , Germinação/fisiologia , Filogenia , Desenvolvimento Vegetal , RNA de Plantas/genética , Transcriptoma
11.
BMC Plant Biol ; 17(1): 50, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222700

RESUMO

BACKGROUND: In nature, orchid plants depend completely on symbiotic fungi for their nutrition at the germination and the subsequent seedling (protocorm) stages. However, only limited quantitative methods for evaluating the orchid-fungus interactions at the protocorm stage are currently available, which greatly constrains our understanding of the symbiosis. Here, we aimed to improve and integrate quantitative evaluations of the growth and fungal colonization in the protocorms of a terrestrial orchid, Blettila striata, growing on a plate medium. RESULTS: We achieved both symbiotic and asymbiotic germinations for the terrestrial orchid B. striata. The protocorms produced by the two germination methods grew almost synchronously for the first three weeks. At week four, however, the length was significantly lower in the symbiotic protocorms. Interestingly, the dry weight of symbiotic protocorms did not significantly change during the growth period, which implies that there was only limited transfer of carbon compounds from the fungus to the protocorms in this relationship. Next, to evaluate the orchid-fungus interactions, we developed an ink-staining method to observe the hyphal coils in protocorms without preparing thin sections. Crushing the protocorm under the coverglass enables us to observe all hyphal coils in the protocorms with high resolution. For this observation, we established a criterion to categorize the stages of hyphal coils, depending on development and degradation. By counting the symbiotic cells within each stage, it was possible to quantitatively evaluate the orchid-fungus symbiosis. CONCLUSIONS: We describe a method for quantitative evaluation of orchid-fungus symbiosis by integrating the measurements of plant growth and fungal colonization. The current study revealed that although fungal colonization was observed in the symbiotic protocorms, the weight of the protocorm did not significantly increase, which is probably due to the incompatibility of the fungus in this symbiosis. These results suggest that fungal colonization and nutrition transfer can be differentially regulated in the symbiosis. The evaluation methods developed in this study can be used to study various quantitative aspects of the orchid-fungus symbiosis.


Assuntos
Micorrizas/fisiologia , Orchidaceae/microbiologia , Simbiose , DNA Fúngico/isolamento & purificação , Germinação , Micorrizas/genética , Orchidaceae/crescimento & desenvolvimento
12.
Mol Ecol ; 26(6): 1652-1669, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28099773

RESUMO

Some green orchids obtain carbon from their mycorrhizal fungi, as well as from photosynthesis. These partially mycoheterotrophic orchids sometimes produce fully achlorophyllous, leaf-bearing (albino) variants. Comparing green and albino individuals of these orchids will help to uncover the molecular mechanisms associated with mycoheterotrophy. We compared green and albino Epipactis helleborine by molecular barcoding of mycorrhizal fungi, nutrient sources based on 15 N and 13 C abundances and gene expression in their mycorrhizae by RNA-seq and cDNA de novo assembly. Molecular identification of mycorrhizal fungi showed that green and albino E. helleborine harboured similar mycobionts, mainly Wilcoxina. Stable isotope analyses indicated that albino E. helleborine plants were fully mycoheterotrophic, whereas green individuals were partially mycoheterotrophic. Gene expression analyses showed that genes involved in antioxidant metabolism were upregulated in the albino variants, which indicates that these plants experience greater oxidative stress than the green variants, possibly due to a more frequent lysis of intracellular pelotons. It was also found that some genes involved in the transport of some metabolites, including carbon sources from plant to fungus, are higher in albino than in green variants. This result may indicate a bidirectional carbon flow even in the mycoheterotrophic symbiosis. The genes related to mycorrhizal symbiosis in autotrophic orchids and arbuscular mycorrhizal plants were also upregulated in the albino variants, indicating the existence of common molecular mechanisms among the different mycorrhizal types.


Assuntos
Micorrizas/classificação , Orchidaceae/microbiologia , Raízes de Plantas/genética , Isótopos de Carbono/análise , Orchidaceae/genética , Estresse Oxidativo , Raízes de Plantas/microbiologia , Simbiose
13.
Sci Rep ; 5: 11893, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26150080

RESUMO

Phytoplasmas (class, Mollicutes) are insect-transmissible and plant-pathogenic bacteria that multiply intracellularly in both plants and insects through host switching. Our previous study revealed that phytoplasmal sigma factor rpoD of OY-M strain (rpoDOY) could be a key regulator of host switching, because the expression level of rpoDOY was higher in insect hosts than in plant hosts. In this study, we developed an in vitro transcription assay system to identify RpoDOY-dependent genes and the consensus promoter elements. The assay revealed that RpoDOY regulated some housekeeping, virulence, and host-phytoplasma interaction genes of OY-M strain. The upstream region of the transcription start sites of these genes contained conserved -35 and -10 promoter sequences, which were similar to the typical bacterial RpoD-dependent promoter elements, while the -35 promoter elements were variable. In addition, we searched putative RpoD-dependent genes based on these promoter elements on the whole genome sequence of phytoplasmas using in silico tools. The phytoplasmal RpoD seems to mediate the transcription of not only many housekeeping genes as the principal sigma factor, but also the virulence- and host-phytoplasma interaction-related genes exhibiting host-specific expression patterns. These results indicate that more complex mechanisms exist than previously thought regarding gene regulation enabling phytoplasmas to switch hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Phytoplasma/metabolismo , Fator sigma/metabolismo , Animais , Proteínas de Bactérias/genética , Sequência de Bases , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Bacteriano , Insetos/microbiologia , Dados de Sequência Molecular , Phytoplasma/genética , Doenças das Plantas/microbiologia , Plantas/microbiologia , Regiões Promotoras Genéticas , Fator sigma/genética , Transcrição Gênica , Virulência/genética
14.
J Virol ; 89(1): 480-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320328

RESUMO

UNLABELLED: Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE: Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly throughout the cell, and we performed live imaging and ultrastructural analysis to identify the mechanism of motility. We provide evidence that cytoplasmic protein agglomerates were passively dragged by actomyosin-mediated streaming of the endoplasmic reticulum (ER) in plant cells. In virus-infected cells, NP agglomerates were surrounded by the ER membranes, indicating that NP agglomerates form the basis of enveloped virus particles in close proximity to the ER. Our work provides a sophisticated model of macromolecular trafficking in plant cells and improves our understanding of the formation of enveloped particles of negative-strand RNA viruses.


Assuntos
Citoplasma/virologia , Retículo Endoplasmático/virologia , Proteínas do Nucleocapsídeo/metabolismo , Vírus de Plantas/fisiologia , Multimerização Proteica , Vírus de RNA/fisiologia , Ficus , Microscopia Imunoeletrônica , Transporte Proteico , Nicotiana
15.
Gene ; 510(2): 107-12, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22982017

RESUMO

The rapid production of huge amounts of reactive oxygen species (ROS) is one of the responses of animal and plant cells induced under stress conditions, such as pathogenic bacterial infection. To protect against the cytotoxic ROS, it is important for pathogenic bacteria to inactivate ROS by employing their antioxidant enzymes like superoxide dismutase (SOD). Here, we cloned and characterized the sodA gene from the plant pathogenic bacterium, 'Candidatus Phytoplasma asteris' OY-W strain. This is the first description of gene expression and antioxidant enzymatic activity of SOD from a phytoplasma. We also demonstrated the sodA gene product (OY-SOD) functions as Mn-type SOD. Since other Mollicutes bacteria such as mycoplasmas do not possess sodA probably due to reductive evolution, it is intriguing that phytoplasmas possess sodA despite their lack of many metabolic genes, suggesting that OY-SOD may play an important role in the phytoplasma colonization of plants and insects. Moreover, Western blot analysis and real-time PCR revealed that OY-SOD is expressed when the phytoplasma is grown in both plant and insect hosts, suggesting it is functioning in both hosts. Possible role of SOD in protection against damage by host-derived ROS is discussed.


Assuntos
Chrysanthemum , Perfilação da Expressão Gênica , Phytoplasma/enzimologia , Phytoplasma/genética , Doenças das Plantas/microbiologia , Superóxido Dismutase/genética , Animais , Clonagem Molecular , Hemípteros/microbiologia , Espécies Reativas de Oxigênio , Análise de Sequência de DNA , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo
16.
Plant Cell ; 24(2): 778-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22307853

RESUMO

Plants possess a multilayered defense response, known as plant innate immunity, to infection by a wide variety of pathogens. Lectins, sugar binding proteins, play essential roles in the innate immunity of animal cells, but the role of lectins in plant defense is not clear. This study analyzed the resistance of certain Arabidopsis thaliana ecotypes to a potexvirus, plantago asiatica mosaic virus (PlAMV). Map-based positional cloning revealed that the lectin gene JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE1 (JAX1) is responsible for the resistance. JAX1-mediated resistance did not show the properties of conventional resistance (R) protein-mediated resistance and was independent of plant defense hormone signaling. Heterologous expression of JAX1 in Nicotiana benthamiana showed that JAX1 interferes with infection by other tested potexviruses but not with plant viruses from different genera, indicating the broad but specific resistance to potexviruses conferred by JAX1. In contrast with the lectin gene RESTRICTED TEV MOVEMENT1, which inhibits the systemic movement of potyviruses, which are distantly related to potexviruses, JAX1 impairs the accumulation of PlAMV RNA at the cellular level. The existence of lectin genes that show a variety of levels of virus resistance, their targets, and their properties, which are distinct from those of known R genes, suggests the generality of lectin-mediated resistance in plant innate immunity.


Assuntos
Arabidopsis/imunologia , Lectinas/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Potexvirus/patogenicidade , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia
17.
FEMS Microbiol Lett ; 324(1): 38-47, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22092762

RESUMO

Poinsettia branch-inducing phytoplasma (PoiBI) is a phytopathogenic bacterium that infects poinsettia, and is associated with the free-branching morphotype (characterized by many axillary shoots and flowers) of many commercially grown poinsettias. The major membrane proteins of phytoplasmas are classified into three general types, that is, immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp). These membrane proteins are often used as targets for the production of antibodies used in phytoplasma detection. Herein, we cloned and sequenced the imp and idpA genes of PoiBI strains from 26 commercial poinsettia cultivars. Although the amino acid sequences of the encoded IdpA proteins were invariant, those of the encoded Imp varied among the PoiBI isolates, with no synonymous nucleotide substitution. Western blotting and immunohistochemical analyses revealed that the amount of Imp expressed exceeded that of IdpA, in contrast to the case of a related phytoplasma-disease, western X-disease, for which the major membrane protein appears to be IdpA, not Imp. These results suggest that even phylogenetically close phytoplasmas express different types of major membrane proteins.


Assuntos
Variação Genética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Phytoplasma/genética , Phytoplasma/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Western Blotting , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Euphorbia/microbiologia , Expressão Gênica , Perfilação da Expressão Gênica , Imuno-Histoquímica , Dados de Sequência Molecular , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
18.
PLoS One ; 6(8): e23242, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858041

RESUMO

Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the "host switching" between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to "host switching" between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of "host switching" mechanism may contribute to the development of novel pest controls.


Assuntos
Regulação Bacteriana da Expressão Gênica , Insetos/microbiologia , Phytoplasma/genética , Plantas/microbiologia , Transcriptoma , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , DNA Circular/genética , Gadolínio/farmacologia , Perfilação da Expressão Gênica/métodos , Genoma Bacteriano/genética , Especificidade de Hospedeiro , Imuno-Histoquímica , Espaço Intracelular/microbiologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Canais Iônicos/metabolismo , Redes e Vias Metabólicas/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osmose , Phytoplasma/metabolismo , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
19.
J Virol ; 85(19): 10269-78, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21752911

RESUMO

Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.


Assuntos
Carlavirus/imunologia , Carlavirus/patogenicidade , Inativação Gênica , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Nicotiana/virologia
20.
Plant J ; 67(6): 971-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21605209

RESUMO

Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes.


Assuntos
Flores/microbiologia , Flores/fisiologia , Genes Homeobox , Petunia/genética , Petunia/microbiologia , Regulação para Baixo , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/genética , Meristema/genética , Meristema/microbiologia , Phytoplasma/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...